Interface Science Department

Interface Science Department

Our department investigates the unique structural, electronic, vibrational and chemical properties of size- and shape-selected nanostructures and thin films and their interfaces with gas and liquid environments.

Understanding the interplay between the numerous factors determining the physico-chemical behavior of such systems is crucial for optimizing their efficiency for applications in catalysis and more specifically in energy conversion. To this end, advanced synthesis methods and in situ / operando surface/bulk-sensitive characterization techniques are being employed in our department for the fundamental understanding of catalysts “at work”.

Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction

Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction

N. J. Divins, D. Kordus, J. Timoshenko, B. Roldan Cuenya et al. Nature Comm. 12, 1435 (2021).

Potential‐dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ AFM
 

Potential‐dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ AFM  

G. H. Simon, C. S. Kley, B. Roldan Cuenya, Angew. Chem. Int. Ed. 59, 2561 (2021).

In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy
 

In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy

 

  J. Timoshenko, B. Roldan Cuenya, Chem. Rev. 49, 6884 (2020).

The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction

The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction

R. M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, Nature Energy 5, 317 (2020).

Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on selectivity

Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on selectivity


P Grosse, A. Yoon, C. Rettenmaier, A. Herzog, S. W. Chee, B. Roldan Cuenya,  Nature Commun. 12, 6736 (2021).

Imaging electrochemically synthesized Cu2O cubes and their subsequent evolution ...

Imaging electrochemically synthesized Cu2O cubes and their subsequent evolution ...

R. M. Arán-Ais, R. Rizo, P. Grosse, G. Algara Siller, K. Démbélé, M. Plodinec, T. Lunkenbein, S. W. Chee, B. Roldan Cuenya, Nature Commun. 11, 3489 (2020).

Shape-Controlled Nanoparticles as Anodic Catalysts in Low Temperature Fuel Cells

Shape-Controlled Nanoparticles as Anodic Catalysts in Low Temperature Fuel Cells

R. Rizo, B. Roldan Cuenya
ACS Energy Lett. 4, 1484 (2019).

Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction

Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction


P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan Cuenya, Angew. Chem. Int. Ed. 57, 6192 (2018).

Structure- and Electrolyte-Sensitivity in CO2 Electroreduction

Structure- and Electrolyte-Sensitivity in CO2 Electroreduction

R. M. Aran Ais, D. Gao, B. Roldan Cuenya, Acc. Chem. Res. 51, 2906 (2018).

Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions

Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions

M. Ahmadi, H. Mistry, B. Roldan Cuenya, J. Phys. Chem. Lett. 7, 3519 (2016).

ISC News

Roentgen Medal for Roldán

Roentgen Medal for Roldán

September 15, 2022

FHI Director Prof. Dr Beatriz Roldán Cuenya received the Röntgen Medal 2022 in recognition of her research on catalysis, especially electrocatalysis, and the associated possibilities for the use of new sustainable energy sources of the future. The prize was awarded on 10 September by Remscheid's Lord Mayor Burkhard Mast-Weisz in the Klosterkirche in Remscheid-Lennep.
  more

International conference in Prague started today

The international conference "Challenges on renewable energy storage" at Liblice Castle near Prague started today with strong FHI participation. The conference from 29 to 31 August is being held jointly with the Czech J. Heyrovský Institute for Physical Chemistry and with the support of the CatLab project. more

New Understanding of Water Electrolysis

Water electrolysis is a key technology to establish CO2-neutral hydrogen production. One of the key technological hurdles is the design of stable, active and affordable catalysts for the anodic oxygen evolution reaction (OER), which is one bottleneck of the hydrogen production process. Researchers from the Interface Science Department have now provided quantitative near-surface structural insights into oxygen-evolving CoOx(OH)y nanoparticles which are published in Nature Energy today. more

Show more

Upcoming Events

No events

Go to Editor View