Interface Science Department

Interface Science Department

Our department investigates the unique structural, electronic, vibrational and chemical properties of size- and shape-selected nanostructures and thin films and their interfaces with gas and liquid environments.

Understanding the interplay between the numerous factors determining the physico-chemical behavior of such systems is crucial for optimizing their efficiency for applications in catalysis and more specifically in energy conversion. To this end, advanced synthesis methods and in situ / operando surface/bulk-sensitive characterization techniques are being employed in our department for the fundamental understanding of catalysts “at work”.

Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction

N. J. Divins, D. Kordus, J. Timoshenko, B. Roldan Cuenya et al. Nature Comm. 12, 1435 (2021).

Potential‐dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ AFM  

G. H. Simon, C. S. Kley, B. Roldan Cuenya, Angew. Chem. Int. Ed. 59, 2561 (2021).

In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy


  J. Timoshenko, B. Roldan Cuenya, Chem. Rev. 49, 6884 (2020).

The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction

R. M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, Nature Energy 5, 317 (2020).

Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on selectivity

P Grosse, A. Yoon, C. Rettenmaier, A. Herzog, S. W. Chee, B. Roldan Cuenya,  Nature Commun. 12, 6736 (2021).

Imaging electrochemically synthesized Cu2O cubes and their subsequent evolution ...

R. M. Arán-Ais, R. Rizo, P. Grosse, G. Algara Siller, K. Démbélé, M. Plodinec, T. Lunkenbein, S. W. Chee, B. Roldan Cuenya, Nature Commun. 11, 3489 (2020).

Shape-Controlled Nanoparticles as Anodic Catalysts in Low Temperature Fuel Cells

R. Rizo, B. Roldan Cuenya
ACS Energy Lett. 4, 1484 (2019).

Dynamic Changes in the Structure, Chemical State and Catalytic Selectivity of Cu Nanocubes during CO2 Electroreduction

P. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan Cuenya, Angew. Chem. Int. Ed. 57, 6192 (2018).

Structure- and Electrolyte-Sensitivity in CO2 Electroreduction

R. M. Aran Ais, D. Gao, B. Roldan Cuenya, Acc. Chem. Res. 51, 2906 (2018).

Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions

M. Ahmadi, H. Mistry, B. Roldan Cuenya, J. Phys. Chem. Lett. 7, 3519 (2016).

ISC News

A team of researchers from the Department of Interfacial Sciences has discovered how changes in the structure of copper catalyst particles during electrochemical CO2 reduction affect their catalytic performance. This should lead to the development of new catalysts that convert the greenhouse gas CO2 into useful chemicals.

In 2021, two Professors of the Fritz Haber Institute are among the 0.1 % most cited scientists worldwide, top 1% by citations for field and year in the Web of Science.

The Max Planck Society and the Alexander von Humboldt Foundation recognize the achievements of Prof. Dr. Anastassia Alexandrova from the University of California, Los Angeles.   more

Upcoming Events

No events

Go to Editor View