Publications of Matthias Scheffler

Thesis - PhD (38)

901.
Thesis - PhD
Lorenz, S.: Reactions on surfaces with neural networks. Technische Universität Berlin
902.
Thesis - PhD
Seitsonen, A.P.: Theoretical investigations into adsorption and co-adsorption on transition-metal surfaces as models to heterogenous catalysis. Technische Universität Berlin
903.
Thesis - PhD
Petersen, M.: Dichtefunktionaltheoretische Untersuchung zur Wechselwirkung von H, He und Ne mit Metalloberflächen. Technische Universität Berlin
904.
Thesis - PhD
Scheffler, M.: Winkelaufgelöste Photoemission von adsorbierten Schichten. Technische Universität Berlin
905.
Thesis - PhD
Scheffler, M.: Winkelaufgelöste Photoemission von Adsorbatsystemen. Technische Universität Berlin Berlin

Thesis - Diploma (1)

906.
Thesis - Diploma
Cao, J.: Polymerization of Carbon Nitride - experimental and theoretical investigation. Freie Universität Berlin

Thesis - Master (5)

907.
Thesis - Master
Zhao, B.: Identifying descriptors for the in-silico, high-throughput discovery of the thermal insulators for thermoelectric applications. Technische Universität Darmstadt
908.
Thesis - Master
Lim, B.: Discussion, implementation and demonstration of AI-guided active workflows. Technische Universität Darmstadt
909.
Thesis - Master
Oehlers, M.: Identifying exceptional data points in materials science using machine learning. Technische Universität Berlin
910.
Thesis - Master
Kowalski, H.-H.: First-principles Study of Thermoelectric Magnesium Silicides with High-Throughput Techniques. Technische Universität Berlin
911.
Thesis - Master
Ahmetcik, E.: Machine Learning of the Stability of Octet Binaries. Technische Universität Berlin

Thesis - Bachelor (1)

912.
Thesis - Bachelor
Müller, P.M.: Thermal Conductivities of Group IV and Group III-V Compound Semiconductors from First Principles. Technische Universität Berlin

Working Paper (17)

913.
Working Paper
Mauß, J.M., K.S. Kley, R. Khobragade, N.K. Tran, J. De Bellis, F. Schüth, M. Scheffler and L. Foppa: Modelling the Time-Dependent Reactivity of Catalysts by Experiments and Artificial Intelligence., in press.
914.
Working Paper
Sugathan Nair, A., L. Foppa and M. Scheffler: Materials-Discovery Workflows Guided by Symbolic Regression: Identifying Acid-Stable Oxides for Electrocatalysis., in press.
915.
Working Paper
Behler, J., G. Csanyi, L. Foppa, K. Kang, M.F. Langer, J.T. Margraf, A. Sugathan Nair, T.A.R. Purcell, P. Rinke, M. Scheffler, A. Tkatchenko, M. Todorovic, O.T. Unke and Y. Yao: Workflows for Artificial Intelligence., in press.
916.
Working Paper
Quan, J., M.-Y. Zhang, M. Scheffler and C. Carbogno: Temperature-Dependent Electronic Spectral Functions From Band-Structure Unfolding., in press.
917.
Working Paper
Moerman, E. and M. Scheffler: Coupled-Cluster Theory for the Ground State and for Excitations., in press.
918.
Working Paper
Kang, K., M. Scheffler, C. Carbogno and T. Purcell: Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials Through Active Learning., in press.
919.
Working Paper
Foppa, L. and M. Scheffler: Coherent Collections of Rules Describing Exceptional Materials Identified with a Multi-Objective Optimization of Subgroups., in press.
920.
Working Paper
Boley, M., F. Luong, S. Teshuva, D.F. Schmidt, L. Foppa and M. Scheffler: From Prediction to Action: The Critical Role of Proper Performance Estimation for Machine-Learning-Driven Materials Discovery., in press.
Go to Editor View