Exzitonenspaltung – ein Photon rein, zwei Elektronen raus
Die Photovoltaik, also die Umwandlung von Licht in Elektrizität, ist eine Schlüsseltechnologie für eine nachhaltige Energieversorgung. Seit den Tagen von Max Planck und Albert Einstein wissen wir, dass sowohl Licht als auch Elektrizität quantisiert sind, d. h. sie kommen in winzigen Paketen vor, die Photonen bzw. Elektronen genannt werden. In einer Solarzelle wird die Energie eines einzelnen Photons stets auf ein einzelnes Elektron des Materials übertragen, aber nicht auf mehrere. Nur einige wenige molekulare Materialien wie Pentacen bilden eine Ausnahme, bei denen ein Photon in zwei Elektronen umgewandelt wird.
Diese Anregungsverdopplung, die als Exzitonenspaltung bezeichnet wird, könnte für die Entwicklung hocheffizienter Photovoltaik äußerst nützlich sein, insbesondere um die vorherrschende Technologie auf Siliziumbasis zu verbessern. Ein Team von Forschern des Fritz-Haber-Instituts der Max-Planck-Gesellschaft, der Technischen Universität Berlin und der Julius-Maximilians-Universität Würzburg hat nun den ersten Schritt dieses Prozesses entschlüsselt, indem es einen ultraschnellen Film der Umwandlung von Photonen in Elektrizität aufnahm und damit eine jahrzehntealte Debatte über den Mechanismus des Prozesses beendete.
"Wenn Pentacen durch Licht angeregt wird, reagieren die Elektronen im Material darauf extrem schnell", erklärt Prof. Ralph Ernstorfer, ein Autor der Studie. "Bisher war umstritten, ob ein Photon zwei Elektronen direkt anregt oder zunächst ein Elektron, welches dann seine Energie mit einem anderen Elektron teilt."
Um dieses Rätsel zu lösen, verwendeten die Forscher hochmoderne Technik zur Beobachtung der Dynamik von Elektronen auf der Femtosekunden-Zeitskala, das ist ein Milliardstel einer Millionstel Sekunde. Mit einer ultraschnellen Elektronenfilmkamera konnten sie zum ersten Mal Bilder der extrem kurzlebigen angeregten Elektronen aufnehmen.
"Diese Elektronen zu sehen, war entscheidend, um den Prozess zu entschlüsseln", sagt Alexander Neef vom Fritz-Haber-Institut und Erstautor der Studie. "Ein angeregtes Elektron hat nicht nur eine bestimmte Energie, sondern bewegt sich auch in bestimmten Bahnen, die Orbitale genannt werden. Es ist viel einfacher, die Elektronen zu unterscheiden, wenn wir ihre Orbitalformen sehen können und wie sich diese mit der Zeit verändern."
Anhand der Bilder aus dem ultraschnellen Elektronenfilm konnten die Forscher die Dynamik der angeregten Elektronen erstmals anhand ihrer Orbitaleigenschaften zerlegen. "Wir können nun mit Sicherheit sagen, dass nur ein Elektron direkt angeregt wird, und haben den Mechanismus des Anregungs-Verdoppelungsprozesses identifiziert", ergänzt Alexander Neef.
Die Kenntnis des Mechanismus der Exzitonenspaltung ist eine wesentliche Voraussetzung für die Nutzung von Exzitonen für photovoltaische Anwendungen. Eine Silizium-Solarzelle, die mit einem anregungsverdoppelnden Material verbessert wurde, könnte den Wirkungsgrad bei der Umwandlung von Sonnenenergie in Elektrizität um ein Drittel erhöhen. Ein solcher Fortschritt könnte enorme Auswirkungen haben, da die Solarenergie die dominierende Energiequelle der Zukunft sein wird. Schon heute fließen große Investitionen in den Bau von Solarzellen der nächsten Generation.