Publications of Matthias Scheffler
All genres
Thesis - Master (5)
901.
Thesis - Master
Zhao, B.: Identifying descriptors for the in-silico, high-throughput discovery of the thermal insulators for thermoelectric applications. Technische Universität Darmstadt
902.
Thesis - Master
Lim, B.: Discussion, implementation and demonstration of AI-guided active workflows. Technische Universität Darmstadt
903.
Thesis - Master
Oehlers, M.: Identifying exceptional data points in materials science using machine learning. Technische Universität Berlin
904.
Thesis - Master
Kowalski, H.-H.: First-principles Study of Thermoelectric Magnesium Silicides with High-Throughput Techniques. Technische Universität Berlin
905.
Thesis - Master
Ahmetcik, E.: Machine Learning of the Stability of Octet Binaries. Technische Universität Berlin
Thesis - Bachelor (1)
906.
Thesis - Bachelor
: Thermal Conductivities of Group IV and Group III-V Compound Semiconductors from First Principles. Technische Universität Berlin
Working Paper (12)
907.
Working Paper
Nair, A.S., L. Foppa and M. Scheffler: Materials Database from All-electron Hybrid Functional DFT Calculations., in press.
908.
Working Paper
L. Foppa, K. Kang, , , A. Sugathan Nair, , , M. Scheffler, , , and : Workflows for Artificial Intelligence., in press.
, , 909.
Working Paper
Quan, J., M.-Y. Zhang, M. Scheffler and C. Carbogno: Temperature-Dependent Electronic Spectral Functions From Band-Structure Unfolding., in press.
910.
Working Paper
Moerman, E. and M. Scheffler: Coupled-Cluster Theory for the Ground State and for Excitations., in press.
911.
Working Paper
L. Foppa and M. Scheffler: From Prediction to Action: The Critical Role of Proper Performance Estimation for Machine-Learning-Driven Materials Discovery., in press.
, , , , 912.
Working Paper
Foppa, L. and M. Scheffler: Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance., in press.
913.
Working Paper
L.M. Ghiringhelli, C. Carbogno, and M. Scheffler: On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials., in press.
, 914.
Working Paper
M. Rossi, and M. Scheffler: The FHI-aims Code: All-electron, ab initio materials simulations towards the exascale., in press.
, 915.
Working Paper
M. Scheffler: Learning Rules for Materials Properties and Functions., in press.
and 916.
Working Paper
R. Ouyang, , M. Scheffler, L.M. Ghiringhelli and C. Carbogno: Analysis of Topological Transitions in Two-dimensional Materials by Compressed Sensing., in press.
, 917.
Working Paper
M. Scheffler and : Three European Centers of Excellence in Computational Science. (133), 1–13 (2016).
, , , 918.
Working Paper
Ghiringhelli, L.M., C. Carbogno, S.V. Levchenko, F.R. Mohamed, , , and M. Scheffler: Towards a Common Format for Computational Materials Science Data. (131), 1–16 (2016).
Issue (1)
919.
Issue
Scheffler, M. and : Focus on Advances in Surface and Interface Science. New Journal of Physics 9 (2007).
Editorial (1)
920.
Editorial
Ghiringhelli, L.M., C. Baldauf, , , C. Carbogno, , , , C. Draxl, , , , , , , , M.-O.L. Himmer, , , , , , , , B. Regler, , , , , , , , , and M. Scheffler: Shared Metadata for Data-Centric Materials Science. Scientific Data 10, 626 (2023).