Publications 2022 of the
Emeritus Group Prof. Scheffler
2022 | 2021 | 2020 | 2019
Journal Article (28)
2022
Journal Article
Aggoune, W., , , , , , , and C. Draxl: A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment. Communications Materials 3, 12 (2022).
Journal Article
R. Miyazaki, L. Foppa, and : Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H2-Dependent CO2 Reduction to Metabolic Intermediates. Journal of the American Chemical Society 144 (46), 21232–21243 (2022).
, , ,
Journal Article
N. Rybin, , , , , , , , , , , , , , , , , , , , , , and : The 2021 Room-Temperature Superconductivity Roadmap. Journal of Physics: Condensed Matter 34 (18), 183002 (2022).
, , , , , , , , , , , , , , , ,
Journal Article
M. Scheffler, , and : Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie 134 (50), e202209016 (2022).
, , , ,
Journal Article
M. Scheffler, , and : Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie International Edition 61 (50), e202209016 (2022).
, , , ,
Journal Article
Carbogno, C., , B. Bieniek, C. Draxl, L.M. Ghiringhelli, , , , , , , and M. Scheffler: Numerical quality control for DFT-based materials databases. npj Computational Materials 8, 69 (2022).
Journal Article
Foppa, L. and L.M. Ghiringhelli: Identifying Outstanding Transition‑Metal‑Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery. Topics in Catalysis 65 (1-4), 196–206 (2022).
Journal Article
Foppa, L., T. Purcell, , M. Scheffler and L.M. Ghiringhelli: Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated with Bulk Properties of Perovskites. Physical Review Letters 129 (5), 0545301 (2022).
Journal Article
Foppa, L., C.A. Sutton, L.M. Ghiringhelli, , , , and M. Scheffler: Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence. ACS Catalysis 12 (4), 2233–2232 (2022).
Journal Article
M. Rupp: Unified representation of molecules and crystals for machine learning. Machine Learning: Science and Technology 3 (4), 045017 (2022).
and
Journal Article
Kühbach, M.T., , , , , , and : Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy. Microscopy and Microanalysis 28 (4), 1038–1053 (2022).
Journal Article
M. Scheffler, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and L.M. Ghiringhelli: Roadmap on Machine learning in electronic structure. Electronic Structure 4 (2), 023004 (2022).
, , , , , ,
Journal Article
Langer, M.F., A. Goeßmann and M. Rupp: Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. npj Computational Materials 8, 41 (2022).
Journal Article
Z.-K. Han, , , and : Chemical stability and degradation mechanism of Mg3Sb2-xBix thermoelectrics towards room-temperature applications. Acta Materialia 239, 118301 (2022).
, , , , ,
Journal Article
L.M. Ghiringhelli and : Finding predictive models for singlet fission by machine learning. npj Computational Materials 8, 70 (2022).
, , , , , ,
Journal Article
Mazheika, A., Y. Wang, , , , L.M. Ghiringhelli, and M. Scheffler: Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nature Communications 13, 419 (2022).
Journal Article
Miyazaki, R., , , , , and : Substrate-Assisted Reductive Elimination Determining the Catalytic Cycle: A Theoretical Study on the Ni-Catalyzed 2,3-Disubstituted Benzofuran Synthesis via C-O Bond Activation. Organometallics 41 (23), 3581–3588 (2022).
Journal Article
Moerman, E., , , and M. Scheffler: Interface to high-performance periodic coupled-cluster theory calculations with atom-centered, localized basis functions. The Journal of Open Source Software 7 (4), 4040 (2022).
Journal Article
Purcell, T., M. Scheffler, C. Carbogno and L.M. Ghiringhelli: SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparisifying Operator Approach. The Journal of Open Source Software 7 (71), 3960 (2022).
Journal Article
Z.-K. Han and : High-Throughput Screening of Stable Single-Atom Catalysts in CO2 Reduction Reactions. ACS Catalysis 12 (14), 8269–8278 (2022).
, ,
Journal Article
Regler, B., M. Scheffler and L.M. Ghiringhelli: TCMI: a non-parametric mutual-dependence estimator for multivariate continuous distributions. Data Mining and Knowledge Discovery (5), 1815–1864 (2022).
Journal Article
L.M. Ghiringhelli and M. Scheffler: The NOMAD Artificial-Intelligence Toolkit: Turning materials-science data into knowledge and understanding. npj Computational Materials 8, 250 (2022).
, ,
Journal Article
Scheffler, M., , , , , , , , , , , , and C. Draxl: FAIR data enabling new horizons for materials research. Nature 604 (7907), 635–642 (2022).
Journal Article
S. Kokott, , and : “Self-trapping” in solar cell hybrid inorganic-organic perovskite absorbers. Applied Materials Today 26, 101380 (2022).
,
Journal Article
C. Draxl, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and : DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Physical Chemistry Chemical Physics 24 (47), 28700–28781 (2022).
, , , , , , , , , , , , , , , , , ,
Journal Article
M.T. Kühbach, , , , , and : Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data. Acta Materialia 226, 117633 (2022).
, ,
Journal Article
Zhou, Y., C. Zhu, M. Scheffler and L.M. Ghiringhelli: Ab Initio Approach for Thermodynamic Surface Phases with Full Consideration of Anharmonic Effects: The Example of Hydrogen at Si(100). Physical Review Letters 128 (24), 246101 (2022).
Book (1)
2022
Book
M. Scheffler, and : Open Research Data in Naturwissenschaften und Mathematik: Empfehlungen der mathematisch-naturwissenschaftlichen Klasse der BBAW. (Denkanstöße aus der Akademie: Eine Schriftenreihe der Berlin-Brandenburgischen Akademie der Wissenschaften, Vol. 10). Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin (2022).
, , Thesis - PhD (7)
2022
Thesis - PhD
Ahmetcik, E.: Artificial intelligence for crystal structure prediction. Technische Universität Berlin
Thesis - PhD
Dragoumi, M.: Quasiparticle energies from second-order perturbation theory. Freie Universität Berlin
Thesis - PhD
Knoop, F.: Heat transport in strongly anharmonic solids from first principles. Humboldt-Universität zu Berlin
Thesis - PhD
Leitherer, A.: Robust recognition and exploratory analysis of crystal structures using machine learning. Humboldt Universität Berlin
Thesis - PhD
Lenz-Himmer, M.-O. and M. Scheffler: Towards efficient novel materials discovery: Acceleration of high-throughput calculations and semantic management of big data using ontologies. Humboldt-Universität Berlin
Thesis - PhD
Regler, B.: Systematic identification of relevant features for the statistical modeling of materials properties of crystalline solids. Freie Universität Berlin
Thesis - PhD
Yuan, Z.: Electrical conductivity from first principles. Humboldt-Universität zu Berlin
Thesis - Master (2)
2022
Thesis - Master
Zhao, B.: Identifying descriptors for the in-silico, high-throughput discovery of the thermal insulators for thermoelectric applications. Technische Universität Darmstadt
Thesis - Master
Zhu, X.: Ab Initio Green-Kubo Calculations for Strongly Anharmonic Solids: A comparative Benchmark of Lattice Thermal Conductivities. Technische Universität Darmstadt