Publikationen von Thomas Purcell
Alle Typen
Zeitschriftenartikel (11)
1.
Zeitschriftenartikel
32 (6), 063301 (2024)
Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering 2.
Zeitschriftenartikel
38 (20), S. 4477 - 4496 (2023)
Interpretable Machine Learning for Materials Design. Journal of Materials Research 3.
Zeitschriftenartikel
159 (11), 114110 (2023)
Recent advances in the SISSO method and their implementation in the SISSO++ Code. The Journal of Chemical Physics 4.
Zeitschriftenartikel
9, 112 (2023)
Accelerating materials-space exploration for thermal insulators by mapping materials properties via artificial intelligence. npj Computational Materials 5.
Zeitschriftenartikel
130 (23), 236301 (2023)
Anharmonicity in Thermal Insulators: An Analysis from First Principles. Physical Review Letters 6.
Zeitschriftenartikel
129 (5), 0545301 (2022)
Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated with Bulk Properties of Perovskites. Physical Review Letters 7.
Zeitschriftenartikel
7 (71), 3960 (2022)
SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparisifying Operator Approach. The Journal of Open Source Software 8.
Zeitschriftenartikel
8, 217 (2021)
OPTIMADE, an API for exchanging materials data. Scientific Data 9.
Zeitschriftenartikel
5 (56), 2671 (2020)
FHI-vibes: Ab Initio Vibrational Simulations. The Journal of Open Source Software 10.
Zeitschriftenartikel
4 (8), 083809 (2020)
Anharmonicity measure for materials. Physical Review Materials 11.
Zeitschriftenartikel
5, 123 (2019)
Parametrically constrained geometry relaxations for high-throughput materials science. npj Computational Materials Vortrag (7)
12.
Vortrag
Recent Advances in the SISSO Method and Their Implementation in the SISSO++ Code. NOMAD Workshop on Data-centric Cruising for New and Novel Materials, Mechanisms, and Insights, Kiel, Germany (2023)
13.
Vortrag
Accelerating the High-Throughput Search for New Thermal Insulators. School on Artificial Intelligence for Materials Science in the Exascale Era, Calonge, Spain (2023)
14.
Vortrag
Symbolic Regression and Explainable AI. School on Artificial Intelligence for Materials Science in the Exascale Era, Calonge, Spain (2023)
15.
Vortrag
Accelerating the High-Throughput Search for New Thermal Insulators. CBC Special Departmental Seminar, University of Arizona, Tucson, AZ, USA (2023)
16.
Vortrag
AI Accelerated Workflows for Finding Thermal Insulators. NOMAD Meeting, Revealing New and Novel Materials, Mechanisms, and Insights (a Perspective), Potsdam, Germany (2022)
17.
Vortrag
Accelerating the High-Throughput Search for New Thermal Insulators With Symbolic Regression. Overcoming the Global Energy Crisis by Materials Research Regional Series III, Georgia Institute of Technology, Atlanta, GA, USA (2022)
18.
Vortrag
Machine-Learning Aided Approaches. Workshop, Capturing Anharmonic Vibrational Motion in First-Principles Simulations, Centre Européen de Calcul Atomique et Moléculaire (CECAM), Online Event (2021)
Forschungspapier (1)
19.
Forschungspapier
Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials Through Active Learning. (2024)