Publikationen von Johannes Margraf
Alle Typen
Zeitschriftenartikel (26)
21.
Zeitschriftenartikel
24 (4), S. 2623 - 2629 (2022)
CO2-Activation by size-selected tantalum cluster cations (Ta1–16+): thermalization governing reaction selectivity. Physical Chemistry Chemical Physics 22.
Zeitschriftenartikel
156 (2), 024106 (2022)
Regularized second-order correlation methods for extended systems. The Journal of Chemical Physics 23.
Zeitschriftenartikel
155 (24), 244107 (2021)
Data-Efficient Iterative Training of Gaussian Approximation Potentials: Application to Surface Structure Determination of Rutile IrO2 and RuO2. The Journal of Chemical Physics 24.
Zeitschriftenartikel
4 (11), S. 12562 - 12569 (2021)
On the Role of Long-Range Electrostatics in Machine-Learned Interatomic Potentials for Complex Battery Materials. ACS Applied Energy Materials 25.
Zeitschriftenartikel
11 (13), S. 7906 - 7914 (2021)
Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS2. ACS Catalysis 26.
Zeitschriftenartikel
12 (12), S. 4536 - 4546 (2021)
Data-efficient machine learning for molecular crystal structure prediction. Chemical Science Buchkapitel (1)
27.
Buchkapitel
Accelerating molecular materials discovery with machine-learning. In: High-Performance Computing and Data Science in the Max Planck Society, S. 40 - 41. Max Planck Computing and Data Facility, Garching (2021)
Vortrag (30)
28.
Vortrag
Materials Discovery With Foundation Models. Machine Learning in Chemical and Material Sciences, MLCM-25, Online Event (2025)
29.
Vortrag
Extrapolation With Chemical Machine Learning? Seminar, RESOLV Cluster of Excellence, Bochum, Germany (2024)
30.
Vortrag
Machine Learning in Chemical Reaction Space. CECAM Flagship Workshop, Machine Learning of First Principles Observables, Berlin, Germany (2024)
31.
Vortrag
Extrapolation With Chemical Machine Learning. Beilstein Bozen Symposium 2024, Rüdesheim, Germany (2024)
32.
Vortrag
Science Driven Chemical Machine Learning. CICECO Workshop, Artificial Intelligence for Materials Design, Aveiro, Portugal (2024)
33.
Vortrag
Science Driven Chemical Machine Learning. 2nd SIMPLAIX Workshop on Machine Learning for Multiscale Molecular Modeling, Online Event (2024)
34.
Vortrag
Science Driven Chemical Machine Learning. DPG Spring Meeting of the Condensed Matter Section (SKM), Berlin, Germany (2024)
35.
Vortrag
Machine Learning in Electronic Structure Theory. Seminar, Molecular Modeling, University of Cambridge, Cambridge, UK (2024)
36.
Vortrag
Discovering Molecules and Materials With Machine Learning. Seminar, Research Center for Modeling and Simulation, MODUS, Bayreuth, Germany (2023)
37.
Vortrag
Science Driven Chemical Machine Learning. Joint Seminar of Theory and Computational Chemistry, Erlangen, Germany (2023)
38.
Vortrag
Science Driven Chemical Machine Learning. 12th SolTech Conference 2023, Würzburg, Germany (2023)
39.
Vortrag
A Personal Perspective on ML Interatomic Potentials. Crash TEsting machine learning force fields: Applicability, best practices, limitations (TEA 2023), Luxembourg, Luxembourg (2023)
40.
Vortrag
Science-Driven Chemical Machine Learning. MCIC 2023: Materials Science Meets Artificial Intelligence – Advancements in Research and Innovation, Bochum, Germany (2023)