Publikationen von Johannes Margraf
Alle Typen
Vortrag (30)
41.
Vortrag
Robust and Electrostatics-Aware Machine Learning Potentials. CECAM Psi-k Research Conference, Bridging Length Scales with Machine Learning, Berlin, Germany (2023)
42.
Vortrag
Physical Description of Long-Range Interactions in Atomistic Machine Learning Models. Seminars on Machine Learning in Quantum Chemistry and Quantum Computing for Quantum Chemistry (SMLQC), Online Event (2023)
43.
Vortrag
Science-Driven Chemical Machine Learning. Colloquium for Theoretical Chemistry, Universität Marburg, Online Event (2023)
44.
Vortrag
Science Driven Chemical Machine Learning. Thomas Young Center-FHI Workshop, London, UK (2023)
45.
Vortrag
Integrating Machine Learning and Electronic Structure Theory. Seminar, Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany (2023)
46.
Vortrag
Science Driven Chemical Machine Learning. Seminar, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands (2022)
47.
Vortrag
∆-Learning with DFTB: What makes a good baseline? Workshop, Multi-Scale Quantum Mechanical Analysis of Condensed Phase Systems: Methods and Applications, Telluride Science Research Center, Telluride, CO, USA (2022)
48.
Vortrag
Predicting Molecular Properties through Machine Learned Energy Functionals. Seminar, VirtMat, Karlsruhe Institute of Technology (KIT), Online Event (2022)
49.
Vortrag
Heterogeneous Catalysis in Grammar School. FHI-Workshop on Current Research Topics at the FHI, Potsdam, Germany (2022)
50.
Vortrag
Predicting Molecular Properties through Machine Learned Energy Functionals. ML4M 2022, Young Researcher’s Workshop on Machine Learning for Materials 2022, Trieste, italy (2022)
51.
Vortrag
Describing Complex Polar Materials With Physics-Enhanced Machine Learning. ACS Spring Meeting 2022, Symposium, Complexity in Computational Catalysis: Balancing Model and Method Accuracy: Machine Learning and Kinetic Modeling, Online Event (2022)
52.
Vortrag
Data-Efficient Chemical Machine Learning. KAIST Theory Seminar, Seoul, South Korea, Online Event (2022)
53.
Vortrag
Data-Efficient Chemical Machine Learning. Institutskolloquium, Institute of Chemistry, University of Potsdam, Online Event (2022)
54.
Vortrag
Chemical ML Beyond Established Benchmark Datasets. Workshop, ELLIS Machine Learning (ML) for Molecule Discovery, Online Event (2021)
55.
Vortrag
Predicting Molecular Properties Through Machine Learned Energy Functionals. Discussion Meeting, GdR REST Machine Learning (ML), Online Event (2021)
56.
Vortrag
Integrating Machine Learning and Electronic Structure Theory. FHI-Workshop on Current Research Topics at the FHI, Online Event (2021)
57.
Vortrag
Molecular Machine Learning: From Chemical Space to Reaction Space. FHI-Workshop on Current Research Topics at the FHI, Online Event (2020)
Hochschulschrift - Doktorarbeit (1)
58.
Hochschulschrift - Doktorarbeit
Density Functional Tight Binding Theory Informed Multi-fidelity Machine Learning. Dissertation, Humboldt-Universität zu, Berlin (2025)
Forschungspapier (2)
59.
Forschungspapier
Universally Accurate or Specifically Inadequate? Stress-testing General Purpose Machine Learning Interatomic Potentials. (2025)
60.
Forschungspapier
Interplay between shape and composition in bimetallic nanoparticles revealed by an efficient optimal-exchange optimization algorithm. (2021)