Publikationen von Johannes Margraf

Zeitschriftenartikel (25)

2025
Zeitschriftenartikel
Cui, M., K. Reuter und J. Margraf: Multi-fidelity transfer learning for quantum chemical data using a robust density functional tight binding baseline. Machine Learning: Science and Technology 6 (1), 015071 (2025).
Zeitschriftenartikel
Keller, E., V. Blum, K. Reuter und J. Margraf: Exploring atom-pairwise and many-body dispersion corrections for the BEEF-vdW functional. The Journal of Chemical Physics 162 (07), 074111 (2025).
2024
Zeitschriftenartikel
Keller, E., J. Morgenstein, K. Reuter und J. Margraf: Small basis set density functional theory method for cost-efficient, large-scale condensed matter simulations. The Journal of Chemical Physics 161 (7), 074104 (2024).
Zeitschriftenartikel
Rein, V., H. Gao, H. Heenen, W. Sghaier, A.C. Manikas, C. Tsakonas, M. Saedi, J. Margraf, C. Galiotis, G. Renaud, O.V. Konovalov, I.M.N. Groot, K. Reuter und M. Jankowski: Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition. ACS Nano 18 (19), 12503–12511 (2024).
Zeitschriftenartikel
Xu, W., E. Diesen, T. He, K. Reuter und J. Margraf: Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization. Journal of the American Chemical Society 146 (11), 7698–7707 (2024).
2023
Zeitschriftenartikel
Chen, K., C. Kunkel, B. Cheng, K. Reuter und J. Margraf: Physics-inspired machine learning of localized intensive properties. Chemical Science 14 (18), 4913–4922 (2023).
Zeitschriftenartikel
Jung, H., L. Sauerland, S. Stocker, K. Reuter und J. Margraf: Machine-learning driven global optimization of surface adsorbate geometries. npj Computational Materials 9, 114 (2023).
Zeitschriftenartikel
Margraf, J.: Science-Driven Atomistic Machine Learning. Angewandte Chemie International Edition 62 (26), e202219170 (2023).
Zeitschriftenartikel
Margraf, J., H. Jung, C. Scheurer und K. Reuter: Exploring catalytic reaction networks with machine learning. Nature Catalysis 6 (2), 112–121 (2023).
Zeitschriftenartikel
Stocker, S., H. Jung, G. Csányi, C.F. Goldsmith, K. Reuter und J. Margraf: Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. Journal of Chemical Theory and Computation 19 (19), 6796–6804 (2023).
Zeitschriftenartikel
Vondrák, M., K. Reuter und J. Margraf: q-pac: A Python package for machine learned charge equilibration models. The Journal of Chemical Physics 159 (5), 054109 (2023).
2022
Zeitschriftenartikel
Chen, K., C. Kunkel, K. Reuter und J. Margraf: Reorganization energies of flexible organic molecules as a challenging target for machine learning enhanced virtual screening. Digital Discovery 1 (2), 147–157 (2022).
Zeitschriftenartikel
Keller, E., T. Tsatsoulis, K. Reuter und J. Margraf: Regularized second-order correlation methods for extended systems. The Journal of Chemical Physics 156 (2), 024106 (2022).
Zeitschriftenartikel
Kube, P., J. Dong, N. Sánchez Bastardo, H. Ruland, R. Schlögl, J. Margraf, K. Reuter und A. Trunschke: Green synthesis of propylene oxide directly from propane. Nature Communications 13, 7504 (2022).
Zeitschriftenartikel
Levin, N., J. Margraf, J. Lengyel, K. Reuter, M. Tschurl und U. Heiz: CO2-Activation by size-selected tantalum cluster cations (Ta1–16+): thermalization governing reaction selectivity. Physical Chemistry Chemical Physics 24 (4), 2623–2629 (2022).
Zeitschriftenartikel
Margraf, J., Z.W. Ulissi, Y. Jung und K. Reuter: Heterogeneous Catalysis in Grammar School. The Journal of Physical Chemistry C 126 (6), 2931–2936 (2022).
Zeitschriftenartikel
Staacke, C., T. Huss, J. Margraf, K. Reuter und C. Scheurer: Tackling Structural Complexity in Li2 S-P2S5 Solid-State Electrolytes Using Machine Learning Potentials. Nanomaterials 12 (17), 2950 (2022).
Zeitschriftenartikel
Staacke, C., S. Wengert, C. Kunkel, G. Csányi, K. Reuter und J. Margraf: Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model. Machine Learning: Science and Technology 3 (1), 015032 (2022).
Zeitschriftenartikel
Stocker, S., J. Gasteiger, F. Becker, S. Günnemann und J. Margraf: How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? Machine Learning: Science and Technology 3 (4), 045010 (2022).
Zeitschriftenartikel
Türk, H., E. Landini, C. Kunkel, J. Margraf und K. Reuter: Assessing Deep Generative Models in Chemical Composition Space. Chemistry of Materials 34 (21), 9455–9467 (2022).
Zur Redakteursansicht