Research groups

Controlled Molecules
Dr. Sandra Eibenberger-Arias
The research is targeted at spectroscopy and control of cold, gas-phase molecules. We have a specific interest in the spectroscopic investigation and manipulation of chiral molecules. Therefore, we developed a new experimental setup and, since very recently, we have obtained first experimental results.
more
Spectroscopy and chemistry of metal clusters complexes
Dr. André Fielicke
We apply spectroscopic tools for the investigation of strongly bound clusters in the gas phase to elucidate their geometric (and electronic) structures. Our main target is to obtain a fundamental understanding for the often unusual chemical properties of nano-scale materials.
more
Interactions of molecules with fields
Prof. Bretislav Friedrich
Our research revolves around interactions of molecules with and in electric, magnetic, and optical fields and their combinations.  more
Infrared excitation of gas-phase molecules and clusters
Gert von Helden, Ph.D.
We use ion mobility-mass spectrometry (IM-MS) to study the overall shape of proteins and carbohydrates and to separate complex isomeric mixtures. Complementary to that, we measure IR and UV/VIS spectra in ultra-cold helium droplets to obtain more detailed insights information on structure and intramolecular interactions of peptides and proteins.
more
Theoretical Atomic, Molecular, and Optical Physics
Dr. Jesús Pérez Ríos
In our group, we are interested on the fundamentals of the interaction that holds the atoms within the molecules. In particular, we study theoretical cold and ultracold chemistry, physics beyond the standard model through deviations in the spectra of atoms and molecules and how machine learning techniques can help in complex chemical phenomena. more
Atom and molecule optics
Dr. Wieland Schöllkopf

We study experimental atom optics, including reflection, diffraction, and focusing of atoms and small molecules
more
Cold and ultracold molecules
Dr. Stefan Truppe
We use molecular beams and electric, magnetic and electromagnetic fields to cool a gas of molecules to the quantum regime. This allows us to obtain full control over their internal and external degrees of freedom. At very low temperatures (~ 1 µK) the molecules reveal their quantum nature, start to behave cooperatively and form ordered structures through long-range dipole-dipole interactions.
more
Liquid microjets

Dr. Bernd Winter
Research in the Winter group focuses on the electronic structure interactions in liquid water and aqueous solutions of common electrolytes, many organic and inorganic solute molecules, including amino acids, DNA, and from (transition) metal nanoparticles dispersed in water. Experimentally, we apply soft X-ray photoelectron spectroscopy from liquid microjets.

more

Go to Editor View