Publikationen von Lucas Foppa

Vortrag (33)

41.
Vortrag
Foppa, L.: Beyond a Single Description in Subgroup Discovery of Exceptional Materials: Coherent Collections of Rules Clustered by Similarity. NOMAD Workshop, Data-centric Cruising for New and Novel Materials, Mechanisms, and Insights, Kiel, Germany (2022)
42.
Vortrag
Foppa, L.: Clean Experimental Data for Artificial Intelligence – A Key to Decoding Materials Genes in Heterogeneous Catalysis. The 27th North American Catalysis Society Meeting (NAM27), New York, NY, USA (2022)
43.
Vortrag
Foppa, L.: Materials Genes of Selective Oxidation From Clean Experiments and Artificial Intelligence. Symposium, FUNCAT/Center2Center Meeting, Berlin, Germany (2022)
44.
Vortrag
Foppa, L.: Hierarchical Symbolic Regression for Identifying Key Physical Parameters Correlated With Materials Properties. Seminar, Cardiff University, Online Event (2022)
45.
Vortrag
Foppa, L.: Materials Genes of Heterogeneous Catalysis From Clean Experiments and Artificial Intelligence. 8th UK Catalysis Conference (UKCC2022), Loughborough, UK (2022)
46.
Vortrag
Foppa, L.: Identifying the Materials Genes of Heterogeneous Catalysis With Clean Experiments and Tailored Artificial Intelligence. Colloquium, ETH Zurich, Department of Chemistry and Applied Biosciences, Online Event (2021)

Forschungspapier (6)

47.
Forschungspapier
Mauß, J. M.; Kley, K. S.; Khobragade, R.; Tran, N. K.; De Bellis, J.; Schüth, F.; Scheffler, M.; Foppa, L.: Modelling the Time-Dependent Reactivity of Catalysts by Experiments and Artificial Intelligence. (2025)
48.
Forschungspapier
Sugathan Nair, A.; Foppa, L.; Scheffler, M.: Materials-Discovery Workflows Guided by Symbolic Regression: Identifying Acid-Stable Oxides for Electrocatalysis. (2024)
49.
Forschungspapier
Behler, J.; Csanyi, G.; Foppa, L.; Kang, K.; Langer, M. F.; Margraf, J. T.; Sugathan Nair, A.; Purcell, T. A. R.; Rinke, P.; Scheffler, M. et al.; Tkatchenko, A.; Todorovic, M.; Unke, O. T.; Yao, Y.: Workflows for Artificial Intelligence. (2024)
50.
Forschungspapier
Foppa, L.; Scheffler, M.: Coherent Collections of Rules Describing Exceptional Materials Identified with a Multi-Objective Optimization of Subgroups. (2024)
51.
Forschungspapier
Boley, M.; Luong, F.; Teshuva, S.; Schmidt, D. F.; Foppa, L.; Scheffler, M.: From Prediction to Action: The Critical Role of Proper Performance Estimation for Machine-Learning-Driven Materials Discovery. (2023)
52.
Forschungspapier
Foppa, L.; Scheffler, M.: Towards a Multi-Objective Optimization of Subgroups for the Discovery of Materials with Exceptional Performance. (2023)
Zur Redakteursansicht