Researchers at the Department of Physical Chemistry demonstrated a novel way to achieve ultrahigh sensitivity of atomic-scale vibrational spectroscopy using tip-enhanced Raman spectroscopy (TERS). This method will allow investigation of local chemical structures and reactions at the atomic level and give a new insight into atomic-scale light–matter interactions. more

An international team of scientists around members of the Department of Inorganic Chemistry has now succeeded in microscopically observing continuous chemical processes on the surface of a working catalyst in real time with the help of state-of-the-art imaging methods. They found that continuous phase transitions are responsible for the functioning of catalysts. more

Scientists from the University of Innsbruck and the Theory Department of the Fritz-Haber-Institute find highly dynamic structural changes at the surface of working Copper electrocatalysts. These changes turn out to be key to the high performance and could be a design target for future improved catalysts. more

A research team from the Departments of Interface Science and Inorganic Chemistry was able to observe a copper catalyst during the reaction that converts the greenhouse gas CO2 into a chemical energy source. The information gained through their technique will further advance technologically important reactions for green energy production. more

For the longest time, data about molecules was hidden in analogue media and therefore widely inaccessible for researchers. Now, molecular physicists at the Fritz Haber Institute have created a database to make spectroscopic information on molecules available at the touch of a button. more

An international team for the first time observed the formation of a metallic conduction band in electrolytes using photoelectron spectroscopy. This allowed a deeper insight into the behaviour of electrolytes and so-called dissolved or solvated electrons, which play an important role in a large number of large-scale industrial chemical processes. The work is published in Science. more

A team of scientists in the Department of Interface Science was able to exploit the dynamic structural and chemical nature of Cu surfaces under pulsed electrocatalytic reaction conditions to convert the greenhouse gas CO2 into a fuel such as ethanol. more

Go to Editor View