Seminars

Host: Department of Molecular Physics

Using MRI to Map the Brain

MP Department Seminar by Ioanna Mantouvalou

MP Department Seminar by Christopher Ho

MP Department Seminar by Marissa L. Weichmann

MP Department Seminar by Jana Roithova

MP Department Seminar by Richard A. Wilhelm

Quantum Science and Technologies using Ultracold Molecules

Ultracold molecules have a wide range of applications in quantum science and technologies spanning from fundamental physics to quantum computing and quantum chemistry, and this has sparked great interest in laser cooling of molecules. [more]

MP Department Seminar by Achim Peters

Investigating supercooled water with laser- and X-ray spectroscopy

Water exhibits a variety of anomalies, some of which are particularly pronounced in the supercooled region. Its specific properties and possible structural and dynamical origins have been extensively studied, leading to the still inconclusive theory that water may exist in two structural motifs at low temperatures. [more]

Manoeuvring chemical reactions one degree of freedom at a time

The combined use of electric fields, magnetic fields and laser light affords us an ever-increasing level of control over the properties of atoms and molecules, enabling reactivity to be probed as a function of their various degrees of freedom1. Here, we discuss how electrostatic deflection2,3 can be employed to disentangle the reactivity of molecules in different rotational states4, or with different spatial orientation of their constituent atoms5. [more]

Towards atomic diffraction through single-layer graphene

Using hydrogen atoms with a velocity of up to 120 000 m/s, we predict a high probability of coherently diffracting atoms through the natural lattice of the crystalline gratings. [more]

Will a single two-level atom simultaneously scatter two photons?

The interaction of light with a single two-level emitter is the most fundamental process in quantum optics, and is key to many quantum applications. [more]

Diatomic Molecules: from hot to ultracold

In this talk I will be discussing a new ultracold molecules experiment that I'm setting up at Durham University. Ultracold molecules offer possibilities for a range of applications from controlled chemistry and testing beyond standard model physics, to quantum simulation. In this talk I will focus on what makes cold molecules promising candidates for these applications, and how we are working towards harnessing power this experimentally. [more]

Chirality differentiation and manipulation using rotational spectroscopy

Chirality is ubiquitous in nature and involved in many aspects of life, making it an important phenomenon to understand. The enantiomers of chiral molecules have identical physical properties (despite the predicted small contributions due to parity-violating weak interactions), while their chemical and biochemical properties can differ dramatically. Due to these different behaviors, the development of sensitive spectroscopic methods that can differentiate and/or separate molecules of opposite handedness, particularly in complex sample mixtures, are of utmost importance. [more]

Towards State- and Time-Resolved Fluorescence Spectroscopy of Trapped Molecular Ions

  • MP Department Seminar
  • Date: Jan 15, 2024
  • Time: 11:00 AM c.t. - 12:00 PM (Local Time Germany)
  • Speaker: Jascha Lau
  • Otto-Hahn Awardee of the Biological and Medical Section of the MPG and new Group Leader in the Department of Molcecular Physics
  • Location: Haber Villa
  • Room: Seminar Room
  • Host: Department of Molecular Physics
In this talk, I will give an overview of my postdoctoral and doctoral research, with a particular focus on anion photoelectron spectroscopy and infrared fluorescence spectroscopy, as well as the future research direction of my Otto Hahn Group in the Department of Molecular Physics, which will revolve around fluorescence spectroscopy of trapped molecular ions. [more]

Time-resolved XPS for molecular electronic movies

Light excitation couples to molecular electrons. The conversion of photon energy into other molecular forms of energy is then determined by a complex interplay of electrons and nuclei, which is out of the scope of the Born-Oppenheimer approximation. [more]

Ultrafast, all-optical, and highly enantiosensitive imaging of molecular chirality

Just like our hands, chiral molecules exist in pairs of opposite “mirror twins” called enantiomers, which behave identically unless they interact with another chiral “object”. Distinguishing them is vital, e.g. as most biomolecules are chiral, but it can also be a challenging task. [more]

Efforts of Zhejiang University in advancing clean and sustainable energy conversion

In the presentation, a brief introduction of Zhejiang University (ZJU) and State Key Laboratory of Clean Energy Utilization will be given. An overview of China’s achievements, new goals and new measures in alignment with its Nationally Determined Contributions will be presented. [more]

How do chemical bonds break in ultrastrong coupling?

Current efforts for implementing cavity QED in the ultrastrong coupling (USC) regime using molecular vibrations in mid-infrared nanoresonators opens exciting opportunities for exploring novel chemical reactivities that exploit quantum correlations with the electromagnetic vacuum at room temperature. [more]

Watching Femtosecond Molecular Dynamics using Synchrotrons and X-Ray Free-Electron Lasers

Recording real-time movies of dynamical processes in molecules, as, for example, progressing chemical reactions, has been a driving force for many disciplines in fundamental sciences during the last decades. Comparably new are experimental techniques, that address single molecules in the gas phase and that involve coincident single-particle detection for imaging these dynamics are Coulomb explosion imaging and Photoelectron diffraction imaging. [more]

Superradiance in waveguide-coupled atomic ensembles

The power of the light emitted by a single, excited quantum emitter features a characteristic exponential decay. However, the presence of other, identical emitters can substantially alter the decay dynamics of the ensemble. Such collectively enhanced emission is termed superradiance, and has seen increased interest over the last decade due to its potential applications in quantum technology and metrology. [more]

From Heavy Elements to Peptides: Dynamics, Kinetics, and Thermochemistry

In this presentation, I will review recent studies that utilize guided ion beam tandem mass spectrometry to examine the kinetic energy dependence of ion-molecule reactions. [more]

2D Silicates from Ultimate Membranes to Robust Ferromagnets

Silica deposited onto late transition metal surfaces spontaneously forms a 2D van der Waals structure constructed of mirror image planes of rings of corner sharing SiO4 tetrahedra with crystalline and amorphous polymorphs possible. The silica can be deposited by an atomic layer deposition (ALD) process, opening the door to applications. [more]

Rovibronic Transitions in Molecules: Toward an Exact Approach

Molecules exhibit complex structural and dynamical behavior manifested in their degrees of freedom. The common approach to help us understand this complexity is to start with a zero-order approximation. Beyond the zero-order picture, the voyage to explore the molecular world is just about to begin. [more]

Vibrational Circular Dichroism of Molecular Crystals: The Interplay of Symmetry and Chirality

Chiroptical spectroscopy provides an increasingly important, cost-effective alternative for the study of chiral substances in the solid state. In recent years, vibrational circular dichroism (VCD) – the chiral form of IR absorption spectroscopy – has come into focus as a very sensitive probe of molecular conformation and environment. [more]

Single photon hot electron ionization of fullerenes

The separation of the time scales of electronic and nuclear motion in clusters and molecules opens the possibility that the electrons can form a transient and highly excited subsystem coexisting with cold nuclear degrees of freedom. [more]

A new experiment to measure parity violation in trapped chiral molecular ions

The weak force is predicted to give rise to slightly different structures for left and right-handed chiral molecules, contrary to the common conception that enantiomers are perfect mirror images. [more]

An Experiment to Measure the Electron's Electric Dipole Moment Using an Ultracold Beam of YbF Molecules

The fact that more matter than antimatter has been produced in the early stages of the universe is unexplained and known as the matter-antimatter-asymmetry problem [1]. One precondition is the combined violation of charge conjugation and parity (CP-violation) which is too small in the Standard Model. In almost all theories, CP-violation is also a precondition for the electron to have an electric dipole moment (de). [more]

THz SASE and seeded FEL based on high brightness photo injector PITZ

The Photo Injector Test Facility at DESY in Zeuthen (PITZ) develops a prototype of an accelerator-based high-power tunable THz source for pump-probe experiments at the European XFEL. [more]

Laser spectroscopy of radioactive atoms and molecules at CRIS-ISOLDE

MP Seminar
Precision experiments based on heavy and polar diatomic molecules have been proposed as a promising pathway to pin down the level of fundamental-symmetry violations in the Universe. [more]

Ultrafast molecular chirality: a topological connection

I will describe our very recent results on marrying chiral and topological properties in ultrafast electronic response of chiral molecules in gas phase and show that it brings such benefits as new highly efficient (not relying on interaction with magnetic field) and robust chiral observables, in contrast to standard chiroptical methods. [more]

Ultrafast Structural Dynamics of Elementary Water-Mediated Proton Transfer Processes

Proton transport between acids and bases in aqueous solution involves the exchange of protons, rearrangements of hydrogen bonds, and the changes in electron charge distributions of all molecules involved. Progress in the development of ultrafast structurally resolving techniques have enabled to follow in real-time the elementary individual steps in proton transfer that occur on femto- to picosecond time scales. Ultrafast probing in the mid-infrared has provided a wealth of information on hydrogen bond dynamics and proton transfer time scales. Recent progress in soft X-ray spectroscopy of solution phase acids and bases using novel flatjet technology has now made possible to locally probe electronic structure. I will showcase this with examples on proton hydration, and photoacid molecular systems, and indicate how further advances in ultrafast soft X-ray spectroscopy of solution phase proton transfer may be made. [more]
Go to Editor View