Gerhard Ertl Lecture & Award

Gerhard Ertl Lecture & Award

The Ertl Lecture Award was established in 2008 by the three Berlin universities (Humboldt University, Technical University and Free University) and the Fritz Haber Institute of the Max Planck Society and is awarded once a year. It commemorates former FHI Director Gerhard Ertl's Nobel Prize in Chemistry, which he received in 2007. The prize honours outstanding personalities and researchers in the field of catalysis where Ertl carried out exceptional research for many decades. The prize, sponsored by BASF, includes a one-week research stay at the participating Berlin institutions and a keynote lecture. The winner is typically announced in Spring, the lecture takes place around the December 10th, the anniversary of Ertl's Nobel Prize reception.

Host: Alexander Paarmann

THz-VUV Ellipsometry and THz Electron Paramagnetic Resonance Ellipsometry Characterization of SiC and Other Wideband Gap and Ultrawideband Gap Materials

The control over electrical conductivity is critical key to enabling gallium oxide and related materials for high power electronic devices. Understanding the influence of dopants and defects onto the electrical and electronic properties is therefore of paramount importance [1]. Identifying defects and their local electronic properties remains a challenge. [more]

Collective States in Self-assembled Nanomaterials for New Functionalities in Vibrational Spectroscopy and Light-matter Coupling

Collective states are key to understand properties of materials across different length scales. In my talk, I will give an overview of different functionalities that emerge from collective states, with prospects for vibrational spectroscopy and engineering material properties with light. [more]

Ultrafast Structural Dynamics of Molecular and Biomolecular Systems

Observing molecular dynamics experimentally with both, highest spatial and temporal resolution is one of the biggest challenges in chemistry and biochemistry. Understanding and resolving structure-dynamics relationships will help to further understand molecular function. Few experimental methods allow to resolve multi-scale dynamics and structural information in the same experiment. [more]

Semiconductors and Topological Insulators for Infrared and Terahertz Metamaterials

When working in the infrared (IR) or terahertz (THz) spectral ranges, traditional optical materials like gold and silver have extremely large and negative permittivities. This means it is difficult to use these materials for plasmonics or hyperbolic metamaterials, both of which require materials with relatively small and negative permittivities. We must therefore explore alternative materials. In this talk, I will focus on two classes of materials: heavily-doped III-V semiconductors for the IR and topological insulators for the THz. [more]

Polaritonic Metasurfaces

In this talk, I discuss our recent efforts in the context of nano-optics and photonics, with a special emphasis on strong light-matter interactions enabled by excitonic, phononic, electronic and magnonic material responses coupled to engineered metasurfaces. I will discuss our recent theoretical and experimental results in the context of polariton manipulation in these systems, the role of symmetries in their control, and their opportunities for technological advances. The combination of these features with photonic engineering enables giant optical nonlinearities, efficient nanoscale light manipulation and topological wave phenomena. During the talk, I will discuss the exotic light-matter interactions arising in these systems, and their opportunities for wave physics and photonics technologies. [more]
Go to Editor View