Room: 2.06 Host: Martin Wolf

Theory of Higgs Spectroscopy: How to Activate and Detect the Higgs Mode

  • PC Department Seminar
  • Date: Sep 27, 2023
  • Time: 11:00 AM (Local Time Germany)
  • Speaker: Dirk Manske
  • Max Planck Institute for Solid State Research, Stuttgart
  • Location: Building G
  • Room: 2.06
  • Host: Martin Wolf
Higgs spectroscopy is a new and emergent field that allows to classify and determine the superconducting order parameter by means of ultra-fast optical spectroscopy. There are two established ways to activate the Higgs mode in superconductors, namely a single-cycle ‘quench’ or an adiabatic, multicycle ‘drive’ pulse. [more]

Single-molecule imaging and engineering of biological and synthetic molecular motors

  • PC Department Seminar
  • Date: Nov 30, 2023
  • Time: 11:00 AM (Local Time Germany)
  • Speaker: Ryota Iino
  • Institute for Molecular Science, National Institutes of Natural Sciences, Japan
  • Location: Building G
  • Room: 2.06
  • Host: Martin Wolf
Molecular motors, an important class of molecular machines, harness various energy sources to move unidirectionally [1]. The operational principles of molecular motors are distinct from those of man-made macroscopic motors, because they have nanoscale dimensions and generally work in a solution environment where viscosity is dominant. Under these low Reynolds number, overdamped conditions, they cannot rely on inertia to sustain motion. Furthermore, they are continually agitated by random Brownian motion, which provides both challenges and opportunities for the unidirectional motion. [more]

Workshop on “Emerging Techniques of Nanospectroscopy Based on Scanning Probe Microscopy"

Exploring and Manipulating Materials with Ultrafast Linear and Nonlinear Scattering and Spectroscopy Techniques

Our group specializes in ultrafast spectroscopic methods, enabling in-depth studies of material chemistry in intricate environments and the control of quantum phenomena on femtosecond timescales. In the first part of this seminar, I will discuss the role of lithium in various systems from its contribution to symmetry breaking (LiNbO3), to an exotic quantum material (polar metal LiOsO3), to unravel the reasons behind the low hopping rate of lithium ions at the surface of a solid-state electrolyte (LixLa(2-x)/3TiO3). All these systems share the common feature that Li occupies a symmetry-broken state which we can selectively probe using extreme-ultraviolet second-harmonic generation spectroscopy (XUV-SHG), a novel spectroscopy pioneered in my group. In the second part I will discuss recent results on 1T-TiSe2, a prototypical charge-density-wave (CDW) compound that also exhibits strong excitonic correlations in its low-temperature phase. [more]
Go to Editor View