Room: 2.06 Host: Alexander Paarmann

Ultrafast Structural Dynamics of Molecular and Biomolecular Systems

Observing molecular dynamics experimentally with both, highest spatial and temporal resolution is one of the biggest challenges in chemistry and biochemistry. Understanding and resolving structure-dynamics relationships will help to further understand molecular function. Few experimental methods allow to resolve multi-scale dynamics and structural information in the same experiment. [more]

Semiconductors and Topological Insulators for Infrared and Terahertz Metamaterials

When working in the infrared (IR) or terahertz (THz) spectral ranges, traditional optical materials like gold and silver have extremely large and negative permittivities. This means it is difficult to use these materials for plasmonics or hyperbolic metamaterials, both of which require materials with relatively small and negative permittivities. We must therefore explore alternative materials. In this talk, I will focus on two classes of materials: heavily-doped III-V semiconductors for the IR and topological insulators for the THz. [more]

Polaritonic Metasurfaces

In this talk, I discuss our recent efforts in the context of nano-optics and photonics, with a special emphasis on strong light-matter interactions enabled by excitonic, phononic, electronic and magnonic material responses coupled to engineered metasurfaces. I will discuss our recent theoretical and experimental results in the context of polariton manipulation in these systems, the role of symmetries in their control, and their opportunities for technological advances. The combination of these features with photonic engineering enables giant optical nonlinearities, efficient nanoscale light manipulation and topological wave phenomena. During the talk, I will discuss the exotic light-matter interactions arising in these systems, and their opportunities for wave physics and photonics technologies. [more]

Probing and Controlling Lattice Dynamics in Chemical Systems: from 2D Materials to Batteries

Combining lattice and electronic dynamics with functional material properties is a holy grail for condensed matter science. For example, combing semiconducting and magnetic states in a material would enable the unlocking of spin-based electronics such as non-volatile transistors, which are key for low-energy computing [1]. In this talk I will detail our efforts towards lattice-based control of material properties in two important areas. [more]
Go to Editor View