Publications of Karsten Reuter

Thesis - PhD (26)

2022
Thesis - PhD
Xu, W.: Tailoring complexity for catalyst discovery using physically motivated machine learning. Technische Universität München
2021
Thesis - PhD
Kunkel, C.: Data-driven Organic Semiconductor Discovery. Technische Universität München
2010
Thesis - PhD
Guhl, H.: Density functional theory study of oxygen and water adsorption on SrTiO3(001). Humboldt-Universität Berlin
Thesis - PhD
Matera, S.: A First-Principles Based Multiscale Approach from the Electronic to the Continuum Regime: CO Oxidation at RuO2(110). Technische Universität Berlin Berlin
Thesis - PhD
McNellis, E.R.: First-principles modeling of molecular switches at surfaces. Freie Universität Berlin
Thesis - PhD
Rieger, M.: First-principles based models for lateral interactions of adsorbates. Freie Universität Berlin
Thesis - PhD
Sanfilippo, A.G.: An ab-initio study of bilayer graphene using higher order quantum chemical methods. Freie Universität Berlin
2009
Thesis - PhD
Gehrke, R.: First-principles basin-hopping for the structure determination of atomic clusters. Freie Universität Berlin
2008
Thesis - PhD
Zhang, Y.: First-principles statistical mechanics approach to step decoration at solid surfaces. Freie Universität Berlin
2006
Thesis - PhD
Rogal, J.: Stability, composition and function of palladium surfaces in oxidizing environments: A first-principles statistical mechanics approach. Freie Universität Berlin

Thesis - Habilitation (1)

2005
Thesis - Habilitation
Reuter, K.: First-principles statistical mechanics for oxidation catalysis. Freie Universität Berlin Berlin

Thesis - Master (4)

2022
Thesis - Master
Huss, T.: Towards a universal machine learning interatomic potential for the xLi2S-(100 - x)P2S5 material class. Technische Universität München
Thesis - Master
König, P.: Generative Adversarial Networks (GANs) for inverse design of RuO2 surfaces. Technische Universität München
2021
Thesis - Master
Bergmann, N.: Investigation of oxidized Cu surfaces using Gaussian Approximation Potentials. Technische Universität München
Thesis - Master
Sauerland, L.: Machine-learned interatomic potentials for the syngas conversion on Rhodium. Ludwig-Maximilians-Universität München

Working Paper (4)

2025
Working Paper
Jakob, K., K. Reuter and J. Margraf: Universally Accurate or Specifically Inadequate? Stress-testing General Purpose Machine Learning Interatomic Potentials., in press.
Working Paper
Müller, N.S., A.P. Fellows, B. John, A.E. Naclerio, C. Carbogno, K. Gharagozloo-Hubmann, D. Balaz, R.A. Kowalski, H. Heenen, C. Scheurer, K. Reuter, J.D. Caldwell, M. Wolf, P.R. Kidambi, M. Thämer and A. Paarmann: Full Crystallographic Imaging of Hexagonal Boron Nitride Monolayers with Phonon-Enhanced Sum-Frequency Microscopy., in press.
2022
Working Paper
Landini, E., K. Reuter and H. Oberhofer: Machine-learning Based Screening of Lead-free Halide Double Perovskites for Photovoltaic Applications., in press.
2021
Working Paper
Neumann, F., J. Margraf, K. Reuter and A. Bruix: Interplay between shape and composition in bimetallic nanoparticles revealed by an efficient optimal-exchange optimization algorithm., in press.

Editorial (1)

2024
Editorial
Klag, L., R. Gläser, U. Krewer, K. Reuter and J.-D. Grunwaldt: Special Collection: Catalysts and Reactors under Dynamic Conditions for Energy Storage and Conversion. ChemCatChem e202401191 (2024).
Go to Editor View