

Operando thermal analysis

Andrey Tarasov 8.12.2017

Definition of TA

Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Thermogravimetry

Differential Scanning Calorimetry

Key parameters:

Course of the reaction, yield of the reaction Enthalpy

Enthalpy of formation/transformation (reaction, phase transition)

Definition of TA

Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Thermogravimetry

Differential Scanning Calorimetry

operando≈in-situ – "on site"→in heterogeneous catalysis "in reaction mixture under operation conditions"

T, P, $\mu \rightarrow$ conversion/actitvity, mass – transfer conditions

S_{MP} - Measurement signal

 F_B - Buoyancy force , f(T)

- $\rm m_A\,$ Mass of adsorbed gas, f(T)
- $\ensuremath{\mathsf{m}_{\mathsf{SC}}}\xspace$ Mass of sample container

m_s - Mass of sample , f(T)

- $V_{\rm A}$ Volume of adsorbed gas , f(T)
- V_{SC} Volume of sample container

V_s - Volume of sample, f(T)

 ρ_{gas} - Density of gas, f(T)

$$S_{MP} \bullet g = ((m_{sc} + m_s + m_A) - (V_{sc} + V_s + V_A) \bullet \rho_{gas}) \bullet g$$

Signal System mass Buoyancy Force

⁸⁸Ra, ⁸⁴Po

7.39270 7.03723 2.91993	CI = 0.03830 Ra 0.088295	""""""""""""""""""""""""""""""""""""""
	7. 91882 7. 41993 0.49889	
$\frac{C_{2}}{C_{2}}=3.$	154 1. 495003 0. 49579 2. 39892	
Ra	= 113. 3	A. Mit.

Marie and Pierre Curies diary, 1902. Curie Museum

Mr(Ra)=225

1 g earth crust≈10⁻¹³g Ra

$$\begin{split} S_{MP} &- \text{Measurement signal} \\ F_B &- \text{Buoyancy force , f(T)} \\ m_A &- \text{Mass of adsorbed gas, f(T)} \\ m_{SC} &- \text{Mass of sample container} \\ m_S &- \text{Mass of sample , f(T)} \\ V_A &- \text{Volume of adsorbed gas , f(T)} \\ V_{SC} &- \text{Volume of sample container} \\ V_S &- \text{Volume of sample, f(T)} \\ \rho_{gas} &- \text{Density of gas, f(T)} \end{split}$$

Schematic diagram of the Cahn Electrobalnce

Commercially available thermobalances employ one of the Cahn-type electromagnetic balance

No contact

Close proximity

With contact

Sample holders

TGA sample carrier for hanging samples

Sample holders

 $\rm Al_2O_3$ crucibles with different volumes (0.9 ml, 3.4 ml, 5 ml)

Al₂O₃ slip-on plates (ø 10 mm, 17 mm)

Pt/Ir net-shaped slip-on plates (ø 17 mm, 100/225 meshes/cm²)

Netzsch, Setaram

Vertical, free suspended TA instruments Rubotherm

Effect of furnace top opening on apparent mass-change, 5Kpm

• Reproducible in different gas atmospheres and by different heating rates

gas flow decreases during the heating, starting from 600°C

Reassembling the oven Top part of the tube was plugged with solid material The material was analyzed by various techniques

Formula	Concentration, %		
AIF3	92.4		
Bi2O3	0.45		
CaO	0.62		
Cr2O3	0.54		
CuO	1.17		
Fe2O3	1.69		
К2О	0.55		
MoO3	2.95		
NiO	0.16		
P2O5	0.33		
Ru	0.642		
SiO2	1.3		
SO3	0.45		
WO3	0.33		
ZnO	2.21		

Elemental analysis

Surface microstructure

3.00um

22644-004 3.0kV 4.0mm x15.0k SE(M,LA0)

22644-001 7.0kV 12.4mm x350 SE(M,LA0)

22644-002 7.0kV 12.4mm x2.50k SE(M,LA0)

• Reversible melting point (explains dynamic behaviour of the flow)

<u>eutectic LiF-NaF-KF</u> (46.5-11.5-42) T_m=454°C K₁₋₃AlF₄₋₆, CsAlF₄ (NOCOLOK [®]) T_m=560-570°C AgF T_m =435°C Zn T_m = 419°C

Ammount of the phase undergoes melting 1.5-3%

$$CO_{2} + 3H_{2} \longrightarrow CH_{3}OH + H_{2}O \qquad \Delta H = -53kJ / mol$$

$$CO_{2} + H_{2} \longrightarrow CO + H_{2}O \qquad \Delta H = 41kJ / mol$$

$$CO + 2H_{2} \longrightarrow CH_{3}OH \qquad \Delta H = -95kJ / mol$$

What is the surface composition during the operation?

High Preasure Thermobalance

Reaction intermediates and spectators:

Gas	Density (kg/m ³)	
CO/CO ₂ /H ₂ /He(6/8/59/27)	0.33	
CO/Ar/H ₂ /He(14/4/59/23)	0.34	
CO ₂ /He/H ₂ (12.4/28.8/58.8)	0.35	

Density alignment

400mg SiO₂, 30 bar, 250°C, feed gas flow 120 ml/min

MAX-PLANCK-GESELLSCHAFT

TG Methanol Synthesis (250°C, 30bar)

Addition of 1.5% H₂O (250°C, 1bar)

Cu sites – 400 μmol g(cat)⁻¹ ZnOx sites – 273 μmol g(cat)⁻¹

Schumann et al. ACS Catalysis, 2015, 5 Schumann et al. ChemCatChem, 2014, 6

Theoretical mass increase of the catalyst under estimation of *full covered surface* with one type of species

Group/M, gmol ⁻¹	Surface stoichiometry	ΔΜ, % (Cu sites)	ΔΜ, % (ZnO sites)	Full ΔM,% (Cu/ZnO _x sites)
H ₂ O/18 water	1	0.72	0.49	1.21
OH/17 hydroxy	1	0.68	0.46	1.14
OCH ₃ /31 methoxy	1	1.24	0.85	2.09
CHOO/45 formate	2/1	1.8/0.9	1.2/0.6	3/1.5

2.0

1.5

1.0

0.5

0.0

10

Coverage / ML

TG Methanol Synthesis (250°C, 30bar)

Target Reaction Dry reforming (DRM): $CO_2 + CH_4 \rightleftharpoons 2 CO + 2 H_2 \Delta H^0 = 247 \text{ kJ/mol}$ Side reactions (\Leftrightarrow catalyst deactivation because of **coking**):

- Boudouard reaction: $2 \text{ CO} \rightleftharpoons \mathbf{C} + \text{CO}_2$ $\Delta H^0 = -171 \text{ kJ/mol}$
- Methane pyrolysis: $CH_4 \rightleftharpoons C + 2H_2$ $\Delta H^0 = 75 \text{ kJ/mol}$
- Suppression of side reactions:
 - high reaction temperature (900 °C)

 \Rightarrow high temperature stable, long term active, non coking materials required $\Rightarrow \Rightarrow Ni/MgAl_2O_4$ catalyst

Andrey Tarasov, FHI MPG

• Continues coking process

• Less coking at lower Ni concentrations

Tarasov et al., Chem. Ing. Tech., 2014, 86, 1916-1924

Definition of TA

Group of physical-chemical methods which deal with studying materials and processes under conditions of programmed changing's of the surrounding temperature.

Differential Scanning Calorimetry

Key parameters:

Course of the reaction, yield of the reaction Enthalpy

Enthalpy of formation/transformation (reaction, phase transition)

Differential Scanning Calorimetry (DSC) -

experimental methods for measuring thermal effects (heat evolution and consumption)

- in extended range of temperatures;
- with improved productivity;
- with higher temporal resolution

Differential – permanently compared to reference

Principle of combined thermocouple

Registration the temperature of the object and temperature difference between sample and reference

Differential Scanning Calorimetry (DSC) -

experimental methods for measuring thermal effects (heat evolution and consumption)

- in extended range of temperatures;
- with improved productivity;
- with higher temporal resolution

Differential – permanently compared to reference

Scanning – varied (programmed) temperature (permanently and/or stepwise)

Calorimetry – `near calorimetric´ (although reduced) precision (typically, 1-2% of measured thermal value) – as a rule satisactory for a wide range of applications

Based on different technical principles and schemes but fundamentally same physical background: heat transfer and balance

Based on different technical principles and schemes but fundamentally same physical background: heat transfer and balance

$Q = k\Delta T + C(dT/dt) - heat removal and stortage$

Disk shaped, 'Quantitative TA'

Calvet cell

1. 'Quantitative TA'

- multiple sensors
- tight contact between sensors and holders
- rapid heat removal from the sample

 $C(dT/dt) \approx 0$ and $\mathbf{Q} \approx k\Delta T$

1. 'Quantitative TA'

- multiple sensors
- tight contact between sensors and holders
- rapid heat removal from the sample

- relatively simple design;
- wide range of T's;
- compatible with other methods (e.g. TG)
- calibration is critical and can vary from sample to sample;
- gas-solid diffusion

DSC sensors

Thermocouples

Туре	Composition	Temperature range, K		Output voltage
		T _{min}	T _{max}	(0°C) <i>,</i> mV
Т	Cu /constantan	3	670	20
J	Fe/constantan	70	870	34
Е	chromel /constantan	-	970	45
K	chromel /alumel	220	1270	41
S	Pt/PtRh (10)	270	1570	13
Р	Platinel/AuPd	500	1400	12
С	W/WRe(26)	-	2670	39
Ν	Nicrosil/Nisil	-	1200	39

Constantan - 58% Cu, 42% Ni

Chromel - 89% Ni, 10% Cr, 1%Fe

Cu/Constantan disk sensor on Si(X) waffer.

Alumel – 94% Ni, 2% Al, 1,5% Si, 2,5 % Mn Nicrosil/Nisil - Ni, Cr, Silicon/Ni, Silicon

CuNi disk sensor on Ag plate.

Platinel – 55% Pd, 31% Pt, 14% Au

Pt-PtRh(10) diskshaped thermocouple

2. 'Heat-flux', or 'heat-conductive', or Calvet-type DSC

- heat flux is measured outside of the sample assuming that it is proportional to the ΔT on different distances from it

Calvet sensor (top view)

outer cyl.surface (Tout) inner cyl.surface (Tin)

$q \sim (T_{in} - T_{out})$

Calvet calorimetry (incl. DSC):

- none of the TC's measures the temperature of the sample (!!!);
- the DSC signal is formed as ΔT between two cylindrical surfaces (inner and outer) on different distances from the sample

2. 'Heat-flux', or 'heat-conductive', or Calvet-type DSC — heat flux is measured outside of the sample assuming that it is proportional to the ΔT on different distances from it

<u>3D vs. 2D sensing</u>: more efficient (complete) capturing of heat fluxes from/to the sample – lower sensitivity to the sample properties !!!

$$q = K \cdot \Delta T + C \cdot \frac{\partial T}{\partial t} \approx K \left[\Delta T + \tau \left(\frac{d \Delta T}{dt} \right) \right]$$
 - Tian equation

heat removal and storage

- q heat flux at every moment of time
- K specific thermal conductivity
- C specific thermal capacity
- τ K/C characteristic time constant

 T_{0} T_{0}

 $\tau^* = C/k - time \text{ constant of fluxmeter}$

Time constant is depended on design, construction and materials of the calorimetric cell.

 $\boldsymbol{q} = \mathsf{k}[\Delta \mathsf{T} + \tau^*(\mathsf{d} \Delta \mathsf{T}/\mathsf{d} t)]$

Example of 3D calorimetric sensor

All Heat convection,

conduction and radiation is

measured

→

 $q_{\rm diff}^{\rm 2D} \sim \Delta T$

Example of plate-shape DSC sensor (2D)

Only heat conducted directly through the bottom of the vessel is measured $\mathsf{k}^{\uparrow} \Rightarrow \tau^* (\approx \mathsf{C}/\mathsf{k}) \downarrow$ $\langle q \rangle \downarrow @ \tau^* \downarrow$

Three ranges of characteristic times of the process should be considered:

$\tau_{\Theta}{<}0.1\,\tau~~\text{Thermal inertia of the registration system completely shades the kinetics}$

τ_{Θ} >T When the kinetics may rather accurately be determined using Tian equation

$0.1 \ \tau < \tau_\Theta < \tau \qquad \text{When the available methods give kinetics that is somewhat distorted} \\ \text{by the thermal inertia of a sample}$

In-situ DSC

Calvet sensor (top view) thermocouple sample (reaction) tube $\overbrace{}$

 $q \sim (T_{in} - T_{out})$

Quartz tube reactor

Sinev et al.

In-situ DSC setup

Andrey Tarasov, FHI MPG

What can we measure?

Simplified schematic representation

Transformation of gas phase molecules

- Information on reaction kinetics (Ea)
- Simulation of different conditions in-situ
- Adsorption desorption enthalpies

Transformation in solid state

- Redox dynamics
- Effects of oxygen diffusion into subsurface
- Redestribution of bulk and surface oxygen
- Oxygen binding energy (oxides)
- Thermochemistry of defects formation

Adapted using: van Santen, R. A., Modern Heterogeneous Catalysis, Wiley, 2017 and Schlögl, R., Introduction to Heterogeneous Catalysis, Lecture, FHI Berlin, 2017

Case study: Validation, C₂H₄ adsorption on Ag catalyst

5%Ag/SiO2, Max Lamoth

5%Ag/SiO2, Max Lamoth

5%Ag/SiO2, Max Lamoth

Desorption and readsorption are occurring simultaneously with diffusion

In UHV systems diffusion takes part in a very limited extent, while readsorption can be avoided using sufficiently high pumping speed

 $\begin{array}{c} C_{n}H_{2n+2} + \frac{1}{2} O_{2} \rightarrow C_{n}H_{2n} + H_{2}O \\ C_{n}H_{2n+2} + zO_{2} \rightarrow nCO_{X} + (n+1) H_{2}O \end{array}$

Catalysts – V-containing bulk and supported oxides

'Classical' Red-Ox Kinetics over V-containing catalysts – Mars-van-Krevelen* or oxygen rebound-replenish (ORR) mechanism

 $[O]_{S} + A \rightarrow []_{S} + AO$ $[]_{S} + O_{2} \rightarrow ... \rightarrow [O]_{S}$

Sinev et al.

Chemical' factor (i.e. state of surface sites and their interaction with HC's)
 Sinev et al. is more important than 'energy' one

 $D_{[O]} - O$ -binding energy (in 'phase homogeneity' range); $(\Delta H_f)_{M_2O_X}$, $(\Delta H_f)_{M_2O_{X-1}}$ – standard (tabulated) values; ΔH_{rel} – enthalpy of relaxation (elimination of vacancies, lattice re-organization, etc.)

$$|(\Delta H_f)M_2O_{X-1} - (\Delta H_f)M_2O_X| < |E_{[O]}| < |D_{[O]}|$$

Sinev et al.

Experimentally measured value