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Introduction

Why should you care about calculating spectra?
What kinds of spectra can you compute?
What types of approaches are there?

What are the pitfalls?
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Vocabulary

 Name identifies (n,/) quantum number of core electron involved
e |etter give n starting with K

* Number gives / starting with |
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What do we need to understand to describe XAS using theory?



XAS L

Edge onset and hydrogen like atoms
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Useful sum-rules
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XAS (arb. units)

XAS (arb. units)
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XAS K-edge

o K-edge looks like the empty density of states on absorber

a-quartz SiO2
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XAS Ly,m-edge

e Lyn-edge looks like the empty density of states on absorber

a) Measured Cu L, of metallic Cu

Normalized Intensity (Arb. U)
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XAS Ly,m-edge
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XAS L

* |n some cases spectrum seems to reflect d electron count
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Polarization dependence

 Changing E vector gives different spectra for single crystals
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How can we understand these spectra?



One electron Selection Rules

* TJransition described by Fermi’s golden rule

final state Initial state

Transition operator Energy Conservation



One electron Selection Rules

* TJransition described by Fermi’s golden rule

final state Initial state

" . . . ti
Transition operator for light-matter interaction Energy Conservation
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Multipolar approximation

* We can simplify the transition operator
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Multipolar approximation

* We can simplify the transition operator
T =p-ceT

* By expanding the plane wave as

e 1 /o N2
elk'r—1+1(k r) Q’i(lc-f’)

* How do we know which terms to keep?



Multipolar approximation

* We can simplify the transition operator
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* By expanding the plane wave as

e 1 /o N2
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 Option 1: Dimensional analysis



Multipolar approximation

* We can simplify the transition operator
T =p-ceT

* By expanding the plane wave as

e 1 /o N2
elk'r—1+1(k r) Q’i(lc-f’)

* How do we know which terms to keep?
 Option 1: Dimensional analysis

e Option 2: Look at (E : 77)



Multipolar approximation

* Edge energy approximately energy of electron in n shell
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One electron Selection Rules

e | ooks like the dipole approximation is pretty good
T =75-¢

e What does it do in our Golden rule expression?
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Dipole transitions
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Dipole transitions
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Dipole transitions
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Dipole transitions
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Dipole transitions
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Dipole transitions
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Dipole transitions
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Dipole transitions

| L/
0 (w) = ;‘<f|T‘Z>‘2w_Ef+iF/2

e Dipole transitions are between Al + 1

e O Is atensor that obeys the point group symmetry

Oxx Oxy Oxz
Oyx Oyy Oyz
Ozx Ozy Oz

» Powders are isotropic—trace of o



Now we can understand angular dependence

e Changing E vector probes different elements of o

e Holes in the dxo-y2
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Now we can understand angular dependence

e Changing E vector probes different elements of o

e Empty r* along [110] with out-of-plane E

e Empty o* along [110] with in plane E

" 0-0 -
0 .': 3
= E T R S
= ° A -
.D' 90_ V\/\z‘v\l '.'
5 [110] A \
>
2
5 [001] ».\/«w“/ \
= .
20’ y M/./\
[110] : ‘ \\M
| | |
510 520 530 540 550 560

Photon Energy (eV)
J. Pawel-Crew et al Surf. Sci. 339, 25 (1995)



Now we can understand angular dependence

e Changing E vector probes different elements of o

e Empty r* along [110] with out-of-plane E

e Empty o* along [110] with in plane E
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How to compute

e Can we describe all behavior with one framework?

* |n practice pick methodology depending on the type of material
and the measurement

e |et’s start with deep K edges for materials that are not strongly
correlated because DFT is sufficient for them



Quick DFT

e Most electronic structure calculations done with Kohn-Sham DF

e Works amazingly well but has serious limits

e Basic idea is to solve KS equation

( a v2+vea:t(7?)+vﬂ(7?)+vx0(7#))¢(ﬂ = €¢; (T)

2m

e Formally scales as O(N?3)
e Not totally correct because we don’t kKnow vxc

e To solve we need some basis functions that we can pick



Choices to make

e We have already settled on DFT
e Now we need to think about the type of system
e Solid?
 Molecule?
e Metal?
e |nsulator?
* The answers to these questions will impact the approach
e Say we have solid
e For metals and insulators we could then use periodic boundary conditions

e Planewaves are a good basis set for periodic boundary conditions



Planewave DFT

e Expand wave functions in a plane wave basis set
e Advantages

 FFTs reduce scaling from O(N3) to O(N?)

e Systematically improvable with a convergence parameter
* And drawbacks

* Vacuum costs the same as atoms

* Cannot handle rapid oscillations of wave functions—need pseudo
potentials



PAW approach

e |iy and If) are all electron states

* We want to use pseudo states

linear mapping between pseudo and all electron wave functions
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P. E. Blochl, Phys. Rev. B 50, 17953 (1994)

AE partial waves



Dipole and PAW

* Because the core hole is localized only terms on the absorbing atom survive

o(w) = Z <@f )$R’o>’2w — EiJ{ZiF/Q

Sum over projectors

Bs, = D Phon) { Pt

n

D|4)

* To compute the spectrum you need
e Core wave function on absorber
* AE partial waves centered on absorber

* PAW projectors

PHYSICAL REVIEW B 80, 075102 (2009)



What does it all mean?

XAS is (in this case) measuring a lifetime broadened projected
density of states in the presence of a core.
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Oh the core hole

There is a core hole in the final state
But we are using an independent particle approach
Turns out you don’t always need a core-hole
Some common approaches are
e Full core hole
e Half core hole aka Slater’s transition potential approximation

e No core hole



Example a-quartz

e |gnoring the core hole is not a good idea
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Example a-quartz

 Adding a core hole does better but there are still problems

+  Exp.
— Calc.

Absorption (arbit. units)
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Example a-quartz

e Can we do better?

(1x1) cell

O
o

o core hole
® no core hole



Example a-quartz

e The core hole sees is periodic image

(1x1) cell with PBC
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® no core hole
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Example a-quartz

e The core hole sees is periodic image

* Double unit cell size to reduces spurious interaction

strong

interaction

(1x1) cell with PBC

o core hole
® no core hole

weaker
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(2x2) cell with PBC
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Example a-quartz

e With a (2x2x2) cell the calculation is converged

Absorption (arbit. units)

Si K-edge
0 lllllllllllllllllllllllllllllllllllll

M. Taillefumier et al., Phys. Rev. B 66, 195107 (2002)



What happened?

 Core-valence interaction pulls states down




What happened?

 Core-valence interaction pulls states down




Sometimes no hole

* The core valence interaction can appear to be completely screened
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Sometimes half a hole

* The core valence interaction can appear to be partially screened

PBE half hole
PBE no hole .
experiment + experiment
w Cu L, 3 edges in Cu,0 E
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O. Bunau and M. Calandra, Phys. Rev. B 87,205105 (2013).



Sometimes it does not matter

e Or the core hole potential may not do much

20 LiCoO2 O K-edge
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Juhin et al. PRB 81, 115115 (2010)



The good and bad about core holes

 The core hole problem comes from describing two particle system with
independent particle approximation (IPA)

e Good news is IPA works well for K edges

e Bad news is we don’t know how much core hole potential to
include a priori

* |f we want a better answer we need to turn to a two-particle theory
e Good news is we have one in the Bethe-Salpeter equation (BSE)

e Bad news is its computationally expensive



BSE

Hamiltonian similar to before

HBSE —

Screened Coulomb

Non-local exchange

H —H, — Vy+ Vy

Single particle electron and hole Hamiltonians

H,—H,
Interaction

VD

Vx



BSE

* Single particle electron and hole Hamiltonians



BSE

o Screened Coulomb interaction

VD



BSE

* Non-local exchange

Vx



BSE

e BSE and IPA are formally similar

¢ One difference is screened Coulomb interaction

1 4
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BSE

* A bigger difference is the non-local exchange

e |t mixes L and L edges

CaF:

’ ~ A

é !L‘/\ —— fxpenment

-

e _J/\NW no core hole

2

% 1\ DFT(core-hole)

E

| - BSE(L,+L,)
ME (L,+L,, H'=0)| NO non-local exchange

PHYSICAL REVIEW B 82, 205104 (2010)



Computing L1 edges

e BSE can capture non-statistical Li/Li branching

Intensity (arb. units)

Relative Energy (eV)



Computing L1 edges

e BSE can capture non-statistical Li/Li branching

Intensity (arb. units)
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Computing L1 edges

 Non-local exchange means Liialone does not give d hole count

Intensity (arb. units)

Relative Energy (eV)



Computing L1 edges

 Non-local exchange means Liialone does not give d hole count
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Computing L1 edges

e But when there is no white-line IPA can work

Cu metal is d10

Intensity (arb. units)

Energy (eV)



When does BSE fail?

e Formally defined for one-hole and one-electron excitation

* |f many particles are present it might not work—especially when correlated
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Many-body problem



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=0

Intensity (arb)
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M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=0.25

Intensity (arb)
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M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=0.5

Intensity (arb)
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M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=1

Intensity (arb)

J

Energy / eV

M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=1.25

Intensity (arb)

—
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M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20
Q=1.5

Intensity (arb)

—

Energy / eV

M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Core-hole potential

 What if we have a strong core hole potential (Q)?

W=1
U=20

Q=175 exciton

Intensity (arb)

Energy / eV

M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke EPL, 108 57004 (2014)



Strong core-valence interaction

e \We no longer see a PDOS —exciton instead

e \We can use a different approach to capture the physics
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Configuration interaction

e Now we need to capture correlations
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Configuration interaction

 Expand ground state wave function as

wo _ ZCZ' }dn—HLZ>

[/

* Define energies for charge fluctuations

U

B (0 + B (d) | - 2B (d")

A=F(d""L") — E(d")

e Now we need a basis



Parameters

* |f view the parameters U and A graphically...

dn+1

“The Explicit Role of Anion States in High-Valence Metal Oxides” in Quantum Materials: Experiments and Theory Modeling and Simulation Vol. 6



Parameters

* |f view the parameters U and A graphically...
* They tell us something about the electronic structure

dn+1

Mott-Hubbard
v0) = [d")

Positive

Charge Transfer
|tho) = |d")

Mixed Valence
[Y0) =7

Negative
Charge Transfer
|tho) = |d" L)

“The Explicit Role of Anion States in High-Valence Metal Oxides” in Quantum Materials: Experiments and Theory Modeling and Simulation Vol. 6



Parameter sensitivity

e XAS is not sensitive to U and A because excited electron screens

ground state

XAS final state

U+A-Q~A

Q is the core hole potential



Local many-body problem

e Start with the LDA (or better) potential

e (Create a set of Wannier functions

* Build local Hamiltonian on this basis and potential and include all local many
body interactions

L NiO [ |
LAPW
2.0t 1t

energy (eV)

-6.0f

-8.0F

M.W. Haverkort, M. Zwierzycki, O.K. Andersen, PRB 85, 165113 (2012).



Spectra dominated by multiplets

. SI'TiO3 EXp.
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M.W. Haverkort, M. Zwierzycki, O.K. Andersen, PRB 85, 165113 (2012).



Summary of Cl approach

* The bad
 Based on parameters (U and A) that are not easy to compute a priori
 Computationally expensive for large basis

* The good
e XAS rather insensitive to U and A

e |f you can find the values of U and A you will know a great deal about the
system

e Small basis often fine for excitons



Summary of XAS

* Polarization dependence comes from dipole selection rule
 Ly,mneeded in sum rule — mixing due to non-local exchange
 Dichotomy of results on different materials/energy scales

e PDOS when correlations and core hole potential are weak

* Multiplets when correlations and core hole potential are
strong




XPS

* Typically used for chemical shift, stoichiometry, etc...

* To get the zero of XAS you need to know the core level binding energy

,AT




Core level binding energy

e Computing a core level binding energy is straightforward with DFT

* You only get relative binding energy

* You can compute the initial state contribution separately from the
final state contributions

e Initial state shift is just the energy of the KS level relative to
some reference

e Final state shift involves relaxations



Final state shift

Energy difference between final and initial state

E = O.
o

o core hole
® no core hole

Perform SCF calculation with core hole to get energy of final

state

With PBC will require supercell

E =

-4 x

o core hole
® no core hole

Can also use Slater’s transition state approximation



XPS

But the spectra are not delta functions
Final states are always screened
How they are screened matters

Multiple peaks/shape give insight into contributions to ground
state



Photoemission Intensity
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Line shapes for metals

o X-ray edge of a metal is complicated because 1023 conduction electrons
respond to creation core hole

« Original work on absorption

e Exciton theory predicts adsorption edges have power law divergence
near threshold (Mahan 1967)

« Orthogonality catastrophe requires electron-hole excitations for non-zero
absorption (Anderson 1967)

o Asymptotically exact solution available near threshold (Nozieres and
deDomincis 1969)

e Same many body physics present in XPS (Doniach and Sunjic 1970)
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* Orthogonality catastrophe makes main line asymmetric

S FS
forbidden
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* Orthogonality catastrophe makes main line asymmetric
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DS

* Orthogonality catastrophe makes main line asymmetric

States increasing in E

e e e
——— = =——
@ ——
FST + FS2 + .+ FSN



DS

* Orthogonality catastrophe makes main line asymmetric

States increasing in E

—>
How does each state contribute

to (XPS)7
e e e
—— === =——
@ ——
FS1 + FS2 + o+ FSN



DS

« Orthogonality catastrophe makes main line asymmetric

« Probability for an excitation fromito jis M?2/g;?

1S FST

+

FS2

+

+

FSN



DS

« Orthogonality catastrophe makes main line asymmetric

« Probability for an excitation fromito jis M?2/g;?

M exp (ie€s5t) -1

« Total probability density function is () « | exp (-izt) exp |} at
A A A
e e e
hv
1\ = =— =— ———

@ s —

“LL:.

-0

1S FST + FS2 + .+ FSN



Total probability density function is » (&) «

DS

Orthogonality catastrophe makes main line asymmetric

Probability for an excitation fromitojis M2/gj?

o =

exp (-1Et) exp Z
T

Convolve with Lorentzian and Gaussian to get line shape

FS

+

Ei:'z

FS2

M exp (ie€s5t) -1

+

dt

+

FSN



DS

Orthogonality catastrophe makes main line asymmetric
Probability for an excitation fromito jis M2/gj?

Total probability density function is » () «

M? exp (i€ t)

- 1\

exp (-1Et) exp Z
-

o~

€ij

Convolve with Lorentzian and Gaussian to get line shape
Make it solvable by assuming
e matrix elements small and equal

* DOS continuous = replace sum with integral over joint DOS

e DOS constant = JDOS is linear




DS

* Assumptions restrict validity to neighborhood near Ef!



Requirement of constant DOS problematic

* |(E) integrals do not coverage because JDOS is linear

o 242
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Requirement of constant DOS problematic

* |(E) integrals do not coverage because JDOS is linear

o 242
I (E)~J e iBt et It o= T5

elE t-1

(E")?2

exp (J JDOS (E) dE ') dt
0 )

e JDOS must tend to zero as E goes to infinity

JDOS(E)




Requirement of constant DOS problematic

* |(E) integrals do not coverage because JDOS is linear

C iBt At} o? +2
I (E)~| e**%e” e 2
-
elE t-1

gz 9’| at

exp (ijDOS (E)
0

* JDOS must tend to zero as E goes to infinity
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Requirement of constant DOS problematic

* |(E) integrals do not coverage because JDOS is linear

© _iEt -2t} _o? t2
I (E)~ e e e 2
-0
elE t-1

gz 9’| at

exp (JwJDOS (E)
0

* JDOS must tend to zero as E goes to infinity

A




JDOS Features

* Size and shape of of JDOS features influence peak shape
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e Use occupied IS DOS and unoccupied FS DOS to generate JDOS

Intensity (ah)

JDOS from DFT

e Can just use JDOS from DFT calculations (still ignoring matrix elements)

JdE’ IS DOS(E)

E>

O

x FSDOS(E'+E)

[xps from DFTJDOS for d—d

carbide




Non-metallic?

e Primary screening is charge transfer from ligands

e Return to Cl picture

wo _ Zc’i }dn+ZLZ>

7

U

B (0 + B (@) | - 2B (d")

A=F(d""L") — E(d")



Local many-body problem

* Use Wannier functions from LDA to build local Hamiltonian and potential

* Include all local many body interactions

intensity (arb. units)

845 850 855 860 . 865 870 875 880 885
binding energy (eV)

M.W. Haverkort, M. Zwierzycki, O.K. Andersen, PRB 85, 165113 (2012).

e Nice results ... but sensitive to U and A



Uand A

e XAS is not sensitive to U and A because it is charge neutral

e XPS is very sensitive to U and A because valence electrons screen

XAS final state

U+A-

ground state

XPS final state




And non-local screening

e Can even add non-local screening to channel to handle metallic
and insulating systems within same framework

gn+ Ik g;;{l
P A
\I \-Ui’_ic
dn LY
. i
hv o
2900006 j_.%
i | >
(9) (h)

PHYSICAL REVIEW B 87, 045108 (2013)



And non-local screening

e Can even add non-local screening to channel to handle metallic
and insulating systems within same framework

n+1 C in n+1 N
gL p A_C ﬁ o L] 5 cd
\I \-U 4 A d"'M I\-Udc
| L
dn L \ 4 % A"‘t anHL
(o:+ il B dn A*-Ug,
M
cd™M
hv o hv o
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@ "7 i 7 (e) o

PHYSICAL REVIEW B 87, 045108 (2013)



And non-local screening

e Can even add non-local screening to channel to handle metallic
and insulating systems within same framework

Schematic result for Hg.Ru.O, metal insulator transition

M Ru 3d core-levels
M: Il cd™'M Metallic
L: B cd™L Ligand
P c

€Binding Energy

PHYSICAL REVIEW B 87, 045108 (2013)

(d)

€Binding Energy



And non-local screening

e Can even add non-local screening to channel to handle metallic
and insulating systems within same framework

| I | I
Expt
LA Ru3dd pl T,Ru0,

A . rf.I/I i ‘,‘ h V —_—
—— 150 K .. ¥ ks T
PPN S Y\ 793keV

Intensity (arb. units)

Intensity (arb. units)

290 286 284 282 280 278
Binding energy (eV)

PHYSICAL REVIEW B 87, 045108 (2013)



XPS summary

e Core level binding energies straight from DFT
e |PA gives a delta function
* Many body physics gives useful line shapes
* Metallic systems can be tackled with DFT

 Metallic and non-metallic line shapes can be computed with Cl-approach

,AT




Bringing it all together

* Absorption and emission give complimentary information
e Screening in XPS due to ligands and/or condition band
e Screening in XAS from excited electron
* Ininsulator XAS edge will not align with XPS BE!
* For non-correlated materials there are lots of options
e XAS—BSE and IPE (for K edges) ... in principle Cl and DMFT
e XPS—JDOS and Cl and DMFT
* Core level shift—Slater transition state, ASCF, initial state
* For correlated materials (DFT might even fail you so be careful) the options are limited
* XAS—BSE for one-electron one-hole excitations otherwise Cl and DMFT

e XPS—CIl and DMFT



Questions



BSE NEXAFS

Treat core-hole correctly

Get excitonic effects

L2,3 branching

Still only with 10% of peak positions and 20% peak strength
Using NLPP possible errors with non-locality

Use DFT wave functions -> missing -1/r tail in LDA may be problematic
for clusters/surfaces

Static electron-hole screening -> fine when exciton binding energy not
too large otherwise might need Strinati equation

RPA electron-hole screening -> kernel W evaluated with RPA can
overestimate exciton binding energy

DFT-LDA
/ Kohn-Sham

LDA
i

EiLDA W

Xo

K Pyop

Bethe-Salpeter Equation

Rev. Mod. Phys., Vol. 74, No. 2, April 2002



Why does |PA work®

onhe-electron approach BSE
2
=24 Vo + %
2m

=h+[Ve— Vel+[2 -Z].




Why does |PA work®

onhe-electron approach BSE
2
=2 4 Ve + 2
2m

@[Vg—vc]+[z’—z].

non-interacting response




Why does |PA work®

onhe-electron approach BSE

2
h,— : V/ +ZI

O

non-interacting response

screened core hole




Why does |PA work®

onhe-electron approach BSE

2
h,— : V/ +El

(H6 D

non-interacting response

screened core hole

dynamically screened
exchange




Why does |PA work®

e Same quasi-particle hamiltonian

onhe-electron approach BSE
2
h' = V. + X e =® Vp(i) + Vx(i).
non- mteractlng response non-interacting response

screened core hole

dynamically screened
exchange




Why does IPA work?

one-electron approach

2
W= +V.+%

screened core hole

dynamically screened
exchange

BSE

hig; = V(D).

direct screened core hole



Why does IPA work?

one-electron approach

P2

h' =
2

F V.4 T

m
Ve@) = Vo) s

bare potential

iInduced potential

BSE

hig; = V(D).

direct screened core hole



Why does IPA work?

* Direct screened core hole analogous to BSE

onhe-electron approach BSE
P2
h—zmlvc+2 Pegr = +
=/ +[Ve = Vel m@:/k%w@%w=m

1 * / Lo o -
Xy 2 RO expl—itk — @) - R
V.(F) — V(@) = A '
A\ @

bare potential

induced potential | bare potential induced potential



Why does IPA work?

one-electron approach

dynamically screened
exchange

2
/ p / /
h' = -V + 2

2m ¢

BSE

unscreened direct
exchange



Why does |PA work™

one;electron approach BSE

P /
W= T Vet E hegr =

+[Z - Z].

self energy is like dynamically screened exchange

() = iG[v + (€ (@) — D] & Ver HZc(w))

unscreened exchange

dynamic part of self energy



Why does |PA work™
e Exchange differs a bit

onez-electron approach BSE
/ p / / .

BSE exchange is non-local unscreened for

+ [E’ — 2] . BSE hamiltonian

1
self energy is like dynamically screened exchange Vx :|l‘ _ r’|

E(w) - iG[v 4 (6_1((1)) . l)v] Ly Zc(w) | creation annihilation of e/h pairs

unscreened Fock exchange

dynamic part of self energy

change in valence relaxation for exchange
change in dynamic self energy



Why does |PA work®

onhe-electron approach BSE
p2
h' = Y. V. + % hl.. = h+ Vp(i) + Vx().

=h+[Ve— Vel+[Z -Z].




Why does IPA work?

onhe-electron approach BSE
p2
h' = Y. V. + % hl.. = h+ Vp(i) + Vx().

=h+[Ve— Vel+[Z -Z].

terms evaluated locally




Why does |PA work®

onhe-electron approach BSE
p2
h' = Y. V. + % L = h + Vp(i) + Vx(i).

=h+[Ve— Vel+[Z -Z].

terms evaluated locally

For (deep) K edge there is no spin orbit and <r| ¢z> IS localized so this does not matter



Why does |PA work®

one-electron approach BSE

h =h

[Ve — Vel

[y_;' _ z] . hoe = h+ Vp(i) + Vx(i).

(>100eV) K edge both are equivalent!



