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Abstract. We report on emerging beam resonances appearing in diffraction
patterns of a helium atom beam reflected at grazing incidence from a grating.
The plane ruled grating is mounted in an out-of-plane diffraction configuration.
We present the measured angular diffraction patterns as a function of the atom’s
energy change along the grating normal. This presentation allows us to readily
trace back the peak positions and widths to the geometry of the out-of-plane
diffraction configuration. In the diffraction patterns, an interference effect due to
emerging beam resonances is found to progress side by side with a new emerging
diffraction beam.
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1. Introduction

The term emerging beam resonance, also known as threshold resonance, refers to a general
wave diffraction phenomenon that occurs in coherent scattering from a periodic surface. The
effect is revealed by abrupt intensity variations of outgoing diffraction beams (including the
specular beam) which occur when conditions (i.e. wavelength and incidence angle) are such
that another diffracted beam just emerges parallel to the surface. This phenomenon was first
observed with visible light by Robert Wood in 1902 [1] and subsequently analyzed by Lord
Rayleigh [2]. Therefore, in classical optics, the effect and the conditions for its occurrence are
known as the Rayleigh–Wood anomaly and Rayleigh conditions (Rayleigh wavelength λR and
Rayleigh incidence angle θR), respectively (see e.g. [3]).

Emerging beam resonances have been predicted by theory to occur for diffraction of atom
beams from crystal surfaces [4–7]. When the incidence angle fulfills the Rayleigh condition,
i.e. θin = θR, the increase of the emerging beam intensity (as a function of incidence angle) is
predicted (i) to be of infinite slope and (ii) to perturb the other diffraction beam intensities,
In(θin). Here n and θin denote the diffraction order and the incidence angle, respectively. Thus,
the emerging beam resonance is manifested by abrupt intensity variations of outgoing beams,
namely, discontinuities of the slope of In at the Rayleigh angle of incidence. Emerging beam
resonances were expected to occur within an incidence angular range of less than 100 µrad [6].
Under conventional experimental conditions, however, the incident atomic beam divergence
is of the order of a few mrad. As a result, the emerging beam effect is smeared out over an
incidence angle interval that is more than an order of magnitude wider than the width of the
resonance. This experimental constraint was, therefore, identified as one of the main hurdles to
experimentally observe emerging beam resonances [6].

Recently, we observed emerging beam resonances in an atom optical experiment, in which
a highly collimated helium atom beam is diffracted at grazing incidence from a plane ruled
reflection grating of 20 µm period [8]. The high collimation of the incident atom beam and the
relatively large grating period allowed us to resolve emerging beam resonances. By varying the
incidence angle we observed the resonances precisely at the Rayleigh incidence angles as abrupt
variations in the intensities of the diffraction beams and the specular beam.
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Here, we report an experimental study of emerging beam effects using a much finer
diffraction grating with a period of 0.42 µm. As in the previous experiment, the atom beam
impinges upon the grating at grazing incidence. Unlike in the previous experiment, however,
the azimuth angle between the plane of incidence and the grating grooves is extremely small.
Hence, we observe essentially out-of-plane diffraction. Under these conditions the angular range
of the emerging beam resonances increases to more than 500 µrad. As a result, their effect on
the diffraction peak intensities is less pronounced. However, in this geometry emerging beam
resonances cause anomalous variations of the peak shapes of the outgoing diffraction beams,
which are observed to be correlated with the progressive emergence of a new diffraction beam.

This paper is organized as follows. The out-of-plane diffraction geometry used in this work
is discussed in detail in section 2, and the experimental apparatus is described in section 3. The
observations are presented and discussed in section 4, followed by a summary in section 5.

2. Out-of-plane diffraction geometry

The geometry of the grating, and its orientation with respect to the incident atom beam, is
sketched in figure 1(a). The plane of incidence is defined by the incident beam axis and the
grating normal. The two essential features of this configuration are: (i) the grating is oriented
at grazing incidence; and (ii) the grating grooves are close to parallel to the plane of incidence,
resulting in out-of-plane diffraction. This mounting geometry has been referred to as conical
diffraction mount in extreme ultraviolet spectroscopy [9], and it was first applied to grating
diffraction of an atom beam in 1996 [10]. The term conical mount relates to the half-cone
formed by the diffracted wavevectors, as illustrated in figure 1(a). Recently, this geometry was
employed in the scattering of high-energy atomic and molecular beams (kinetic energy ' 1 keV)
from crystal surfaces [11, 12]. In those experiments, the semicircle sketched in figure 1(a) can
be directly visualized by two-dimensional imaging of the fast-atom diffraction spots [13].

The angle of incidence θin is defined as the angle between the incident beam axis and
the grating surface plane. In the experiments presented here, θin 6 10 mrad. The grating can be
rotated by the azimuth angle φ around the z-axis, where the plane of incidence and the grating
normal are chosen as the xz-plane and the z-axis, respectively. As indicated in figure 1, the
y-axis is perpendicular to the plane of incidence. We define φ to be positive when the blaze
arrow of the grating is rotated counterclockwise from the y-axis as shown in figure 1(a). The
blaze arrow is illustrated in the inset of figure 1(a); it is perpendicular to the grating normal and
to the grating grooves, and makes an angle smaller than 90◦ with the facet normal.

The incident He atom beam is characterized by an incident wave vector ki (ki ≡ |ki | =

2π/λ where λ is the de Broglie wavelength of the atoms), which is indicated in figure 1(a)
(solid vector). It decomposes into a component K with magnitude K = ki cos θin parallel to
the surface and a component ki z with magnitude ki z = ki sin θin perpendicular to the surface.
Similarly, the outgoing wavevector is denoted by kG = (K G, kGz). For elastic scattering kG = ki

and, hence, kGz = ki sin θn, where θn is the nth-order diffraction angle, defined with respect to
the grating surface. By momentum conservation K G = K + G, which is illustrated in the figure.
G is a reciprocal grating vector whose magnitude is given by G = n2π/d . Here, the diffraction
order n is defined positive (negative) when θn is larger (smaller) than θ0. Hence, diffraction
beams that are closer to the grating surface than the specular beam are assigned negative orders,
whereas positive-order diffraction beams are further away from the surface than the specular
beam.
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Figure 1. (a) The orientation and geometry of the plane ruled diffraction grating.
The dashed and dotted lines are parallel and perpendicular to the grating surface,
respectively. The grating azimuth angle φ (drawn strongly exaggerated) is the
angle between the blaze arrow (thick dashed arrow) and the y-axis. The detector
entrance slit (slit 3) is indicated by the gray bar crossing the semi-circle. For
the sake of visibility, slit 3, which is parallel to the y-axis, is drawn parallel to the
blaze angle. (b) Scheme of the experimental setup (top view). In both figures the
chosen coordinate system is indicated.

The incoming and outgoing wavevectors are related by energy conservation and satisfy
k2

Gz = k2
i − |K + G|

2, which can be rearranged as

k2
Gz − k2

i z = −2K G cos
(π

2
+ φ

)
− G2. (1)

Since ki = kG = 2π/λ, this equation can be rewritten in the following form:

sin2 θn − sin2 θin = 2| sin φ| cos θin
nλ

d
−

(
nλ

d

)2

, (2)

where the artificial introduction of the modulus for sin φ is necessary due to our sign convention
of n. When |nλ/d| � |sin φ|, this equation can be simplified further to nλ

(d/| sin φ|)
≈ cos θin −

cos θn, which corresponds to the in-plane grating equation [14] with an effective period
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deff = d/|sin φ|. This simplified in-plane grating equation, which was used successfully in our
previous work [8], however, cannot be applied in the present configuration, since nλ/d =

n × 0.83 × 10−3 cannot be neglected compared to sin φ = 5 × 10−3.
Note that, as a result of equation (2), the out-of-plane divergence of the incidence beam, δ⊥,

which could be ignored in previous in-plane helium atom grating diffraction experiments, affects
the diffraction patterns in the out-of-plane diffraction geometry. At grazing incidence the out-of-
plane divergence causes the azimuth angle to be distributed over an interval of width 1φ ≈ δ⊥

centered at the nominal azimuth angle φ. This results in a broadening of the diffraction beams
(except for the specular peak with n = 0). The finite width of the Rayleigh angle, 1θR,m , for the
emergence of the mth-order diffraction beam, is also affected by the out-of-plane divergence of
the incident beam, as will be detailed in section 4.2.

3. Experimental setup

The diffraction apparatus has been described elsewhere before [8, 15, 16]. The continuous
helium atom beam is formed by free-jet expansion of 4He gas (99.999% purity) from a source
cell (stagnation temperature T0 and pressure P0) through a 5 µm-diameter orifice into high
vacuum (see figure 1(b)). In this work, source conditions are either T0 = 8.7 K and P0 = 0.5 bar
or T0 = 300 K and P0 = 31 bar, resulting in a mean velocity (and a corresponding de Broglie
wavelength) of the helium atoms of 300 m s−1 (0.33 nm) or 1760 m s−1 (0.056 nm), respectively.
The relative width of the velocity distribution amounts to less than 1% at T0 = 8.7 K and to
about 9% at T0 = 300 K [17].

After passing through a conical skimmer of 500 µm diameter, the beam is collimated
by two 20 µm-wide, 5 mm-high vertical slits (slits 1 and 2) separated by 100 cm along the
beam axis. These slits limit the horizontal (in-plane) beam divergence δ‖ to δ‖ < 50 µrad. At a
distance of 78 cm downstream from the second slit, there is a third vertical slit (slit 3), which
is the 25 µm-wide, 5 mm-high detector-entrance slit. The observed angular width (full-width
at half-maximum) of the atom beam is 120 µrad, resulting from a convolution of slit 3 with
the divergence-limited beam width. In addition, there is also a 2 mm-high aperture (slit v),
located 95 cm downstream from the orifice. This aperture determines the out-of-plane (vertical)
divergence δ⊥ ≈ 2 mrad.

The detector is a non-commercial mass spectrometer, in which the neutral helium atoms
are ionized by electron impact (120 eV electron energy); the ions are accelerated by 1 kV,
mass selected by a magnetic 90◦-sector field and detected by an electron multiplier tube. The
detector, together with slit 3, is mounted on a frame that can be precisely rotated as indicated
in figure 1(b). The grating is positioned such that the detector pivot axis is parallel to the
grating surface and passes through its center. Hence, the pivot axis (vertical) is parallel to the
y-axis of the reference frame. The detection angle θ is measured with respect to the grating
surface plane. Diffraction patterns are obtained by rotating the detector, namely varying θ ,
and measuring the He signal at each angle. Given the orientation of slit 3 (perpendicular to
the plane of incidence) the high angular resolution of the detector only applies to in-plane
scattering.

The grating is a commercial plane ruled grating (Newport 20RG2400-240-1) with
2400 grooves mm−1, corresponding to a period d = 417 nm, and a blaze angle α = 16.8◦

(≈ 293 mrad) (see the inset of figure 1(a)). It is made of 6 mm thick glass with an aluminum
coating and has a surface area of 5 × 5 cm2.
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Figure 2. Measured angular distributions at T0 = 8.7 K and φ = 5.0 mrad for
various incidence angles plotted as a function of sin2 θ − sin2 θin. The vertical
bands indicate the angular spread for n = −2, −1, 1 and 2 calculated for the
azimuth angle range 4 < φ < 6 mrad. For n > 3 the calculated spreads are
depicted by bars in the upper right of the graph. The incidence angle θin is
(a) 3.51, (b) 4.01, (c) 4.34, (d) 4.68, (e) 4.84 and (f) 5.34 mrad.

4. Results and discussion

4.1. Diffraction patterns

Diffraction patterns of a helium atom beam at T0 = 8.7 K and φ = 5 mrad are shown in figure 2
for various incidence angles. As the right-hand side of equation (2), at grazing incidence, is
approximately independent of θin and θn, the observed angular spectra are plotted as a function
of sin2 θ − sin2 θin. Plotted this way, the diffraction peak positions are independent of the
incidence angle and, hence, peaks of a given diffraction order appear at the same abscissa
position. The abscissa variable, sin2θ − sin2θin, is identical to the kinetic energy change of the
He atoms along the grating normal expressed in units of the incident kinetic energy of the atoms.

To account for the azimuth angle spread, given by 1φ ≈ δ⊥ = 2 mrad centered at φ =

5 mrad, we calculate the diffraction peak positions for the interval 4 < φ < 6 mrad. According
to equation (2), the spread 1φ results in a broadening of the peaks in figure 2 by 1φ 2|n|λ

d .
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Thus, the angular spread δ⊥ does not affect the specular peak (n = 0), but it broadens
the other diffraction peaks increasingly with increasing |n|. The calculated peak widths are
indicated by bars and vertical bands in figure 2. In each band, the sides close to and far
from the specular peak correspond to the calculated peak center for φ = 4 and 6 mrad,
respectively.

It is noteworthy that there is a maximum value for sin2 θ − sin2 θin, above which no helium
signal is found in the spectra of figure 2. It is inferred from equation (2) that sin2 θn − sin2 θin

has a maximum value of sin2 φ cos2 θin (≈ sin2 φ for grazing incidence), thereby confining the
abscissa range of the diffraction spectra. The vertical dashed line in figure 2 corresponds to
this maximum value for φ = 6 mrad, which agrees well with the experimental observations.
The width-indicating bar for n = 7 and 8 spans up to this maximum. The physics underlying
the maximum is the conservation of kinetic energy in the plane perpendicular to the grating
grooves, i.e. the plane spanned by the blaze arrow and the z-axis. The kinetic energy parallel
to the grooves is invariant due to translational symmetry. Equation (1) can be modified to
k2

Gz − k2
i z = K 2sin2 φ − (K |sin φ| − G)2, which says that the increase of the kinetic energy along

the z-axis (left-hand side) corresponds to a decrease of the kinetic energy along the direction
of the blaze arrow, which is identical to the direction of G (right-hand side). Therefore, the
maximum increase of the former, proportional to sin2 θn − sin2 θin, is set by the initial value
of the latter (i.e. K 2sin2 φ). In the pictorial representation of conical diffraction shown in
figure 1(a), this maximum corresponds to the apex of the semicircle.

4.2. Diffraction angles

Figure 3 shows diffraction angles as a function of the incidence angle θin. The diffraction angle
is defined as the angular separation between the nth- and 0th-order diffraction peaks, θn − θ0.
Squares represent experimental data for n = −3 to 2, which have been determined by analyzing
a multitude of diffraction patterns (including those plotted in figure 2). The peak positions θn

are determined by fitting a Gaussian to each individual peak of a given diffraction pattern
plotted as a function of detection angle θ . The incidence angle θin is determined from the
specular peak position θ0.

We determine the azimuth angle φ by analyzing the data shown in figure 3. To this
end, equation (2) is fitted to the observed 1st-order diffraction angles, with φ being the only
fitting parameter. The best fit is found for φ = 5.0 mrad. The other solid curves in figure 3 are
diffraction angles calculated by equation (2) for this azimuth angle.

For each diffraction beam of negative order a threshold incidence angle is found below
which the beam is diffracted ‘into the surface’. This angular region is depicted by the gray-
shaded area. The threshold angle is the Rayleigh angle θR,m , indicated by a vertical line in the
figure for m = −1, where m is the diffraction order of the emerging beam. Furthermore, as
shown in the inset, at a given incidence angle the diffraction angles increase until the 6th order
and then start to decrease again from the 7th order onwards. This reflects the appearance of
a maximum diffraction angle in the out-of-plane configuration, as discussed in the previous
section.

Discrepancies between theory and experiment are found (i) for the 2nd-diffraction order in
the region around θin = 3 mrad and (ii) for the negative orders, which deviate from the theoretical
lines near their respective Rayleigh angle θR,m . The reason for deviation (i) can be seen in
figure 2, where the angular range of the 3rd order is found to overlap with the one for the 2nd
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Figure 3. Diffraction angle θn − θ0 as a function of the incidence angle θin.
Experimental measurements are denoted by filled squares for n = −3 to 2, while
solid curves are theoretical calculations for n = −3 to 8 and φ = 5.0 mrad.

order. This overlap of the peaks causes inaccuracies in the fitting procedure, namely a shift of the
fitted peak center toward larger diffraction angles. Deviation (ii) is attributed to the fact that, for
incidence angles close to θR, only a part of the emerging beam has emerged yet, while another
part is still below the grating surface [18]. The angular spectrum at θin = 4.34 mrad shown in
figure 2(c) exemplifies this effect for the −2nd-order peak, which is at the emerging stage with
a peak width clearly smaller than the width found once the peak has completely emerged, e.g.
at θin = 4.68 mrad (figure 2(d)). Due to this partial emergence, the fitted peak center position is
shifted towards smaller diffraction angles [18].
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We define the angular width 1θR,m as the incidence-angle interval over which the mth-order
peak gradually emerges. There are three contributions to 1θR,m: (i) the in-plane divergence δ‖;
(ii) the out-of-plane divergence δ⊥; and (iii) the de Broglie wavelength spread in the helium
atom beam. Considering equation (2) these contributions are effective through variations of
(i) the incidence angle θin, (ii) the azimuth angle φ and (iii) the wavelength λ, respectively.
For T0 = 8.7 K the relative wavelength spread is just about 1% and, hence, the effect of (iii) is
negligible. The contribution from δ‖ is directly seen in the width of the specular peak, shown in
figure 2, since the right-hand side of equation (2) vanishes for n = 0. For n 6= 0 the dominant
contribution to 1θR,m comes from the out-of-plane divergence δ⊥, discussed above. In figure 3,
the calculated intervals 1θR,m are indicated by horizontal lines for the −1st and −2nd diffraction
orders. These intervals are seen to coincide well with the regions where discrepancies between
the observed and calculated diffraction angles appear.

4.3. Diffraction efficiencies

Diffraction efficiencies, defined as the intensity of the nth-order diffracted beam divided by
the incident beam intensity, are plotted in figure 4 for three azimuth angles, φ = −19, −6.3
and 5.0 mrad. The beam intensities are determined by analyzing the peak areas in diffraction
patterns plotted as a function of detection angle θ . In figure 4, Rayleigh angles θR,m , calculated
for each φ, are indicated by vertical black solid lines. Around θR,m the mth-order peak suddenly
emerges and a steep increase of the diffraction efficiency within the incidence-angle interval
1θR,m , also indicated in the figure, is observed.

The diffraction efficiencies of the other beams exhibit minima or at least dips (minima
in the first derivative) at or close to the Rayleigh angles. In some cases a kink in the efficiency
curve is observed (e.g. in the −1st-order curve for φ = −19 mrad at the −2nd-order emergence).
In general these kinks are, however, much less pronounced than those that have been observed
previously as a typical fingerprint of emerging beam resonances [8]. We attribute this smoothing
out to the increased 1θR,m interval, which is about 0.5 mrad in the present experiment as
estimated in figures 3 and 4. In our previous work it was less than 0.05 mrad due to the small
value of nλ/d with the same beam geometry δ⊥ [8].

Before the onset of the −1st-order emergence (i.e. to the left of the 1θR,−1 interval),
the specular efficiency decreases for all three azimuth angles. During −1st-order emergence
the specular efficiency behaves differently for different |φ|. For φ = −19 mrad, the specular
efficiency increases, although there are only two data points within 1θR,−1. For φ = −6.3
and 5.0 mrad, on the other hand, the specular efficiency decreases within the range 1θR,−1.
This indicates a constructive interference effect on the specular beam for φ = −19 mrad, but a
destructive one for φ = −6.3 and 5.0 mrad. Once the −1st-order beam has fully emerged (to
the right of the 1θR,m interval) the specular efficiency stays almost constant for φ = −6.3 and
5.0 mrad, resulting in a kink in the diffraction efficiency curves at the upper end of the 1θR,−1

interval.
In the ideal situation, when 1θR,m = 0 as in plane wave diffraction, only one kink in the

diffraction efficiency curve is expected at θin = θR,m , representing the emerging beam resonance.
Due to the experimental constraint, however, a new diffraction order emerges within the finite
width of incidence angle 1θR,m , thereby smoothing out the emerging beam resonance and
making it appear less pronounced.
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Figure 4. Diffraction efficiencies measured at three azimuth angles: (a) φ =

−19 mrad, (b) φ = −6.3 mrad and (c) φ = 5.0 mrad as a function of incidence
angles θin for T0 = 8.7 K. The black vertical lines indicate the position of the
Rayleigh angles of incidence, where the −1st- and −2nd-order beams emerge.
The boundaries of 1θR,m are indicated by pairs of colored vertical lines.

4.4. Emerging beam resonances manifested in peak shapes

Although the kinks in the diffraction efficiency curves are less pronounced than the ones
observed previously [8], the present diffraction geometry allows us to observe the effect of
emerging beam resonances directly in the angular patterns. Figure 5 shows a series of diffraction
patterns at the emergence of the −3rd-order peak for an azimuth angle of φ = 5.0 mrad.
Here, different stagnation conditions, namely T0 = 300 K and P0 = 31 bar, were used. In going
from the top to the bottom, the incidence angle is increased from 1.93 to 2.23 mrad. As the
−3rd-order peak is emerging from the right to the left within the n = −3 band, the −2nd-order
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− − −

θ − θ −

Figure 5. Diffraction patterns observed for T0 = 300 K at an azimuth angle φ =

5.0 mrad. The incidence angle is increased from 1.929 mrad (top) to 2.234 mrad
(bottom) with an average step size of 0.034 mrad. For diffraction orders n = −3,
−2, −1 and 0 the vertical bands illustrate the diffraction-angle spread that results
for the given azimuth angle spread of 1φ = 2 mrad according to equation (2).
The dashed line indicates a dip marching through the −2nd-order peak, while
the −3rd-order peak is emerging.

peak is first slightly skewed to the left, exhibits a dip moving in the same direction and is
then skewed towards the right. In other words, while the −3rd-order peak is emerging, a clear
dip marches through the −2nd-order peak as indicated by the dashed line in figure 5. We
attribute this dip to a destructive interference within the −2nd-order diffraction beam caused
by the emerging beam resonance. This significant variation in peak shape is, therefore, another
manifestation of the emerging beam resonance. It is, in fact, reminiscent of the first observation
of the emerging beam resonance effect in 1902 by Robert Wood. Wood observed dark bands
(corresponding to the dip found here) in diffraction patterns of light reflected from a ruled
grating [1]. In Wood’s setup the diffraction beams were wide because he was using a broadband
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Figure 6. Diffraction patterns observed for T0 = 8.7 K at an azimuth angle
φ = −6.3 mrad for various incidence angles. The helium ion signal is plotted
as a function of sin2 θ − sin2 θin, at the Rayleigh condition for n = −2.

light source, whereas in our setup the widening of the diffraction beams is due to the divergence
of the incident beam.

It is remarkable that the diffraction peak shape reflects the resonance already before the
onset of emergence of another diffraction beam. This pre-emergence effect can be seen in the
diffraction patterns shown in figure 6. These angular scans correspond to the data points shown
above in figure 4(b) (φ = −6.3 mrad) for incidence angles close to the −2nd-order Rayleigh
angle. The blue vertical lines in figure 4(b) indicate the incidence-angle window of −2nd-order
beam emergence between θin = 4.46 and 5.03 mrad. The corresponding diffraction patterns are
plotted by thick blue lines in figure 6. Between these two incidence angles the −2nd-order
beam emerges, accompanied by an intensity decrease of the −1st-order peak. Interestingly,
already before the first appearance of the −2nd-order peak, i.e. at incidence angles smaller than
4.46 mrad, we find variations in the −1st-order peak shape. For instance, at θin = 4.09 mrad (red
curve) this peak exhibits a small dip near the top at the right. This dip gets more pronounced

New Journal of Physics 13 (2011) 065017 (http://www.njp.org/)

http://www.njp.org/


13

when the incidence angle is increased to 4.46 mrad, where the −2nd-order peak starts to
appear.

This small dip is possibly caused by the −2nd-order evanescent wave. Before emerging
above the grating surface, a diffraction beam is present in the form of an evanescent wave. An
evanescent wave is characterized by wave propagation parallel to the surface and an asymptotic
exponential amplitude decay along the surface normal direction. Evanescent waves can scatter
diffusely from surface defects [19], thereby contributing to a decrease of the coherent surface
reflectivity in our experiment. In addition, the evanescent wave (here the −2nd order) can
influence the intensities of other outgoing diffraction beams (here the −1st order) through
interference. Thus, the dip in the −1st-order peak might result from destructive interference
with the −2nd-order evanescent wave.

5. Summary

In this work, diffraction patterns of He atom beams scattering at grazing incidence from a
plane ruled blazed grating are presented. The grating is arranged in the conical diffraction
mount, i.e. the grating grooves are almost parallel to the plane of specular scattering. The
observed diffraction patterns exhibit characteristic features when plotted as a function of the
change in the atom’s kinetic energy along the surface normal direction. For instance, the
diffraction peak width appears to increase substantially with increasing diffraction order, and
a maximum possible energy increase along the normal direction is found. These observations
are in quantitative agreement with predictions of the conical diffraction model.

The observed diffraction patterns exhibit emerging beam resonances when the incidence
angle is close to a Rayleigh angle of incidence, at which another diffraction beam emerges from
the grating surface. The emerging beam resonances are manifested as kinks and dips in the
diffraction efficiency curve at the Rayleigh angles. Compared to previous measurements with
a grating of larger period, however, the kinks are less pronounced. This smearing out of the
emerging beam resonances can be attributed to the out-of-plane divergence of the helium atom
beam. This divergence causes an effective spread of the grating azimuth angle, which, in turn,
results in an angular spread of both the Rayleigh angles and the diffraction angles. Consequently,
the diffraction peaks are broadened and the Rayleigh condition is fulfilled for only a part of a
diffraction peak. The observation of a dip, marching through a diffraction peak while a new
diffraction beam is emerging, represents a clear manifestation of this effect. Peculiarities in the
diffraction peak shapes are observed even before the onset of emergence of a new diffraction
beam. This pre-emergence effect is attributed to the evanescent wave that describes a diffraction
beam before its emergence above the surface. Interference between the evanescent wave and the
incident beam can affect the intensity and shape of the outgoing diffraction beams.
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