Fluxionality and σ-Aromaticity in Small Yttrium-Doped Gold Clusters

Ling Lin,^[c] Tibor Höltzl,^[c] Philipp Gruene,^[a] Pieterjan Claes,^[b] Gerard Meijer,^[a] André Fielicke,^{*[a]} Peter Lievens,^{*[b]} and Minh Tho Nguyen^{*[c]}

Aromaticity is a qualitative concept which has been applied in organic chemistry very successfully.^[1,2] Recently, it has been extended to compounds containing different metallic elements.^[3] Reported examples of aromatic binary clusters of transition metals include the Au₅Zn⁺ cation^[4] and the neutral Cu₇Sc molecule.^[5] In Au₅Zn⁺, the six delocalized σ -electrons satisfy the Hückel (4*n*+2) rule, and it is a σ -aromatic five-membered ring.^[4] The ten σ -electrons in Cu₇Sc are also fully delocalized, and on the basis of electron count and a partition of its electron density, this seven-membered ring was shown to be σ -aromatic.^[5] We now present experimental evidence for the geometrical structure of the small neutral yttrium-doped gold clusters Au₄₋₆Y in the gas phase, and demonstrate theoretically that the anion Au₆Y⁻ constitutes a new bimetallic aromatic sixmembered cycle.

Structural information on neutral Y-doped Au clusters is obtained by means of vibrational spectroscopy. To record the vibrational spectra of the clusters in the gas phase, we employ the infrared multiple photon dissociation (IR–MPD) technique using action spectroscopy with Xe as the messenger atom.^[6] The Free Electron Laser for Infrared eXperiments (FELIX) provides intense radiation in the far IR.^[7] Details are provided in the Supporting Information.

Let us first consider the IR spectroscopic results of the smaller clusters Au_4Y and Au_5Y . Their experimental spectra are displayed in Figures 1 a and b together with the calculated vibrational spectra of the Xe complexes. Quantum chemical calculations were carried out using the DFT method with the pure BP86 functional, and the MO coupled-cluster theory CCSD(T) method (computational details and a table with experimental and scaled calculated IR frequencies are given in the Supporting Information).^[8] An initial calibration of DFT methods points

_	
[a]	P. Gruene, Prof. G. Meijer, Dr. A. Fielicke Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6,D-14195 Berlin (Germany) Fax: (+ 49) 30-8413-5603 E-mail: fielicke@fhi-berlin.mpg.de
[b]	P. Claes, Prof. P. Lievens Laboratory of Solid State Physics and Magnetism and INPAC-Institute for Nanoscale Physics and Chemistry University of Leuven, B-3001 Leuven (Belgium) Fax: (+ 32) 16-327983 E-mail: peter.lievens@fys.kuleuven.be
[c]	Dr. L. Lin, T. Höltzl, Prof. M. T. Nguyen Department of Chemistry and INPAC-Institute for Nanoscale Physics and Chemistry University of Leuven, B-3001 Leuven (Belgium) Fax: (+ 32) 16-32 7992
	<i>E-mail: minh.nguyen@chem.kuleuven.be</i> Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cphc.200800580.

Figure 1. Comparison between calculated and experimental IR–MPD spectra of a) Au_4Y , b) Au_5Y , and c) Au_6Y with one Xe atom (in black with *) attached. Calculated stick spectra (BP86/cc-pVDZ-PP, lower panels) without using any frequency scaling are folded with a Gaussian line-width function of 4 cm⁻¹ full width at half maximum. The experimental data points are overlaid with a three-point running average to account for the bandwidth of FELIX. Relative energies (BP86/cc-pVDZ-PP) are given in eV.

out that the BP86 functional leads to reliable predictions of the vibrational frequencies for transition-metal-doped clusters.^[9] Relative energies given hereafter include the zero-point energy corrections. Note that Au₂Y has a slightly bent Au-Y-Au structure (C_{2v}) and Au_3Y exhibits a D_{3h} form in which the Y atom occupies the central position. Attachment of an additional gold atom destroys the high symmetry, giving rise to a nonplanar (C_s) Au₄Y cluster, with a central Y atom but a fourth axial Au atom. The Xe atom prefers to attach to Y in a trans position to the fourth Au atom with respect to the central AuY axis. The observed IR spectrum of Au₄Y features an intense peak centred at 228 $\mbox{cm}^{-1},$ which is reproduced well by DFT calculations (221 cm⁻¹, Figure 1 a). Addition of the fifth gold atom leads to two distinct lower-lying Au₅Y forms nearly having the same energy at both BP86 and CCSD(T) levels. While Au₅Y-I is planar $(C_{2\nu})$, Au₅Y-II still maintains a non-planar C_s form. In both cases, an attachment of Xe to Y is preferred. The IR spectra of both isomers in the region of 150-225 cm⁻¹ turn out to be similar, and both compare relatively well with the observed spectrum, whose peaks are centered at 185 and 211 cm^{-1} (Figure 1 b). Therefore, the isomers of Au₅Y cannot be discriminated based on their vibrational spectra alone, and might coexist in the experiment.

The experimental spectrum shown in the upper panel of Figure 1 c has been obtained by IR–MPD of the Xe complex of Au_6Y .^[7c] Among the numerous structures of Au_6Y possessing a doublet ground state, the two shown in Figure 2 are the

Figure 2. BP86/cc-pVDZ-PP structures [bond lengths in Å] of the two lowestenergy neutral isomers Au_6Y-I and Au_6Y-II , and the anion Au_6Y^-I . Relative energies given in parentheses [eV] were obtained from CCSD(T)/cc-pVTZ-PP using BP86 geometries.

lowest-lying isomers. Both forms have a Y centre, but are nonplanar. A correspondence between Au_6Y-I and Au_6Y-II with Au_5Y-I and Au_5Y-II , respectively, can be established. Au_6Y-II arises from Au_6Y-I by a strong out-of-plane motion of one Au atom. The non-planarity and low-spin state of Au_6Y make it markedly different from other Au_6M clusters with M = Ti, V and $Cr.^{[10]} Au_6Y-I$ (² $A_1, C_{2\nu}$) is more stable than Au_6Y-II (² A'', C_s) by 0.24 eV with CCSD(T) and 0.35 eV with BP86 calculations.

For Au₆Y, the Xe atom also prefers to attach to Y, and the same energy ordering of the two isomers is also found for Xe complexes, but the energy difference between them is increased to 0.49 eV (BP86). Figure 1 c compares the calculated and observed IR spectra of Xe complexes of the two lowest Au₆Y isomers. Interestingly, the experimental IR spectrum is characterized by unusually broad bands—much broader than observed for Au₄Y and Au₅Y—which are not reproduced in the calculated spectra of Au₆Y-II-Xe and Au₆Y-II-Xe.

We now consider the IR spectrum of the lower-lying Au₆Y-I-Xe. The Y-Xe stretch vibration corresponds to a peak at 76 cm⁻¹, which seemingly corresponds to the observed outermost left band. The observed band ranging from 100 to 150 cm⁻¹ is attributed to Au–Au and Y–Au stretch vibrations. The observed band at $\sim 200 \text{ cm}^{-1}$ is a combination of two Au– Y stretch modes, one calculated at 183 and the other at 196 cm⁻¹. The observed strong broadening of the IR bands of Au₆Y needs further consideration. A rationalization would be to attribute this observation to a size-specific highly fluxional character. Indeed, broadening of vibrational bands of various species has been discussed before in terms of very rapid rearrangements. In the case of tricarbonyl (η^4 -norbornadiene) iron, fast interwell dynamical processes have been invoked.^[11] For the methonium cation CH₅⁺ large-amplitude vibrations observed as broad features in the infrared spectrum have been explained through a dynamical mechanism for hydrogen exchange and eventually full hydrogen scrambling.^[12] Also for Si and Au clusters fluxional characteristics have been described for specific sizes.^[13] In the present case, as is illustrated in the potential energy curves shown in Figure 3, the neutral Au_6Y-I species is highly fluxional; it distorts along different axes extremely easily. In fact, the barrier of inversion through a planar transition structure (Figure 3a) amounts to only 1.9 kJ mol^{-1}

Figure 3. Potential energy curves corresponding to a) the inversion, and b) the bond stretching isomerization of the neutral Au₆Y-I obtained at the BP86/cc-PVDZ-PP level.

(BP86 level). More interestingly, the bond stretching isomerization (Figure 3b) is also a highly facile process, as the corresponding energy barrier amounts to only ~0.5 kJ mol⁻¹ at the same level. The existence of the different bond stretching isomers is a consequence of the partially filled quasi-degenerate SOMO and SOMO-1 orbitals. In D_{6h} symmetry these orbitals are perfectly degenerate, which then yield the three bondstretching isomers by Jahn-Teller distortions. This highly anharmonic potential with several degenerate minima in the PES separated by very low barriers is expected to yield fluxional behaviour of the cluster on picosecond timescales, which in turn would explain the broadening of the IR peaks of Au₆Y. Such a broadening was not observed for Au₄Y and Au₅Y, which do not possess similar electronic structures.

Overall, the good agreement for Au_4Y and Au_5Y (Figures 1a– b), and the relatively good agreement for Au_6Y (Figure 1c), taking into account the fluxionality-induced broadening, provides structural identification of the neutral Au_6Y cluster.

The observed structure of Au₆Y can be understood based on its electronic structure. According to the phenomenological shell model,^[14] MOs composed of the valence s orbitals determine the properties and electronic structure of alkaline and metallic clusters such as Cu₇Sc to a great extent.^[5] In planar (nearly) cylindrical clusters, shell closing occurs at ten electrons, which correspond to the $(1s)^2(1p_x)^2(1p_y)^2(1d_{xy})^2(1d_{x^2-y^2})^2$ con-

figuration.^[15] The partial density of states (DOS) of Au_6Y-I indicates that other MOs with large contributions from s orbitals exist. Together with the three electrons of Y, Au_6Y-I has nine electrons in the shell model MOs. The electron localization indicator (ELI–D)^[16] isosurface of Au_6Y-I , given in Figure 4a, dem-

Figure 4. ELI–D isosurfaces for a) Au_6Y -I and c) Au_6Y -I (isovalues = 1.3). Partial ELI–D computed from MOs corresponding to the phenomenological shell model of b) Au_6Y -I and d) Au_6Y -I.

onstrates that there are localization domains only around the nuclei. The partial ELI–D function for the shell model MOs of Au_6Y -I (Figure 4b) is similar to the result for $Cu_7Sc_7^{[5]}$ which thus suggests that MOs with high contributions from valence s orbitals are mainly responsible for the chemical bonding in these clusters. The ELI–D function is much less important in the longer Au–Au bonds, suggesting that the electron distribution in these MOs is responsible for the elongation of these distances.

Attachment of an extra electron to the neutral cluster Au_6Y -I yields the anion Au_6Y -I (Figure 2). Figure 5 shows the total and partial DOS of the s orbitals of the anion Au_6Y -I, where the MOs corresponding to the shell model are also assigned. Au_6Y -I behaves like a 10-electron system satisfying both the shell model and Hückel's rule. Such an electronic configuration belongs to a perfect six-membered ring shape, and induces a

Figure 5. Total (black) and partial (computed from the s AOs, red) density of states and shell model MOs of the **Au6Y**⁻-I anion having high contributions from 6s AOs of Au, and 5s AO of Y.

COMMUNICATIONS

strong stabilization effect. Indeed, Au_6Y^--I is calculated to have a planar D_{6h} symmetry and exhibits a particularly strong binding of the extra electron. The electron affinity of Au_6Y^-I amounts to 3.12 eV (Figure 2). The HOMO–LUMO gap of 2.07 eV for Au_6Y^--I is comparable to that of, for example, $Au_{14}Sc^{-,[17]}$ Both calculated energetic parameters suggest a high stability of the Au_6Y^--I anion. Consistently, as shown in Figure 4d, there are equivalent domains for Au_6Y^--I in the partial ELI–D function for the shell model MOs.

To probe the electronic behaviour of the anion further, the nucleus-independent chemical shifts (NICS)^[2, 18] were calculated. Since the NICS(0) value is strongly influenced by core electrons of the atom in the center of the ring, we rather used the NICS(1) and NICS(2) values where the ghost atom is put 1.0 and 2.0 Å above the middle of the ring, respectively. The NICS(1) value computed above the center of the ring of -15.3 ppm for Au_6Y^--I can be compared to the corresponding value previously calculated for Cu7Sc.^[5] The NICS(2) value at the center of the three-membered Au-Y-Au rings (about -6.5 ppm) of this cluster can be compared to the previously reported value of about $-5\ \text{ppm}$ for the $\sigma\text{-aromatic}$ five-membered cyclic cation Au_5Zn^+ (D_{5h}).^[4] The distribution of NICS(1), NICS(2) and the corresponding zz tensor are negative for Au₆Y⁻-I, thus lending further support for the aromatic character of the anion. Moreover, the NICS(1) and NICS(1)_{zz} of Au_6Y^--I are calculated to be more negative than NICS(2) and NICS(2) $_{zz\prime}$ which is an additional indication for its σ -aromaticity (cf. ESI).

In summary, we report the IR spectra of Au₄Y, Au₅Y, and Au₆Y, which represent the first experimental far-IR spectroscopic data on neutral doped metal clusters in the gas phase. Comparisons with DFT/BP86 calculations allow their ground state structures to be identified. Calculations show that the global minimum of Au₆Y possesses a non-planar $C_{2\nu}$ structure, while the highly fluxional behaviour of this structure accounts for the experimentally observed line broadening in the IR spectra.

The corresponding anion Au₆Y⁻ has a planar cyclic D_{6h} form and the distribution of its σ electrons complies with the electronic shell model. The anion is relatively stable with respect to electron detachment ($IE_a = 3.1 \pm 0.1$ eV). The stability, high symmetry, closed electronic structure and the magnetic properties suggest that it can be regarded as a new σ -aromatic six-membered all-metallic cycle. Its experimental characterization is envisaged by, among others, photoelectron spectroscopy-based techniques.

Acknowledgements

The Leuven groups are indebted to the FWO-Vlaanderen and the K. U. Leuven Research Council. P.C. thanks the IWT-Vlaanderen. P.G. thanks the IMPRS "Complex Surfaces in Materials Science" for funding. This work is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM) in providing beam time for FELIX, and by the European Community-Research Infrastructure Action under the FP6 "Structuring the European Research Area" Programme (through the Integrated Infrastructure Initiative "Integrating Activity on Synchrotron and Free Electron Laser Science").

CHEMPHYSCHEM

Keywords: aromaticity · cluster compounds · gold · IR–MPD spectroscopy · yttrium

- [1] a) P. J. Garratt, Aromaticity, Wiley, New York, **1986**; b) V. I. Minkin, M. N. Glukhovtsev, B. Y. Simkin, Aromaticity and Antiaromaticity, Wiley, New York, **1994**.
- [2] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, *Chem. Rev.* 2005, 105, 3842.
- [3] For a recent reference, see D. Y. Zubarev, B. B. Averkiev, H. J. Zhai, L. S. Wang, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2008, 10, 257.
- [4] H. Tanaka, S. Neukermans, E. Janssens, R. E. Silverans, P. Lievens, J. Am. Chem. Soc. 2003, 125, 2862.
- [5] T. Höltzl, E. Janssens, N. Veldeman, T. Veszprémi, P. Lievens, M. T. Nguyen, *ChemPhysChem* 2008, 9, 833.
- [6] A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, G. Meijer, Phys. Rev. Lett. 2004, 93, 023401.
- [7] a) G. von Helden, D. van Heijnsbergen, G. Meijer, J. Phys. Chem. A 2003, 107, 1671; b) A. Fielicke, G. von Helden, G. Meijer, Eur. Phys. J. D 2005, 34, 83; c) Details of IR–MPD experiments are given in the Supporting Information.
- [8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.

Gonzalez, J. A. Pople, *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford CT, **2004**.

- [9] P. Gruene, A. Fielicke, G. Meijer, E. Janssens, V. T. Ngan, M. T. Nguyen, P. Lievens, ChemPhysChem 2008, 9, 703.
- [10] X. Li, B. Kiran, L. F. Cui, L. S. Wang, Phys. Rev. Lett. 2005, 95, 253401.
- [11] a) F. W. Grevels, J. Jacke, W. E. Klotzbücher, C. Krüger, K. Seevogel, Y. H. Tsay, Angew. Chem. 1987, 99, 960; Angew. Chem. Int. Ed. Engl. 1987, 26, 885; b) J. J. Turner, C. M. Gordon, S. M. Howdle, J. Phys. Chem. 1995, 99, 17532; c) J. J. Turner, F. W. Grevels, S. M. Howdle, J. Jacke, M. T. Haward, W. E. Klotzbücher, J. Am. Chem. Soc. 1991, 113, 8347; d) C. H. Londergan, C. P. Kubiak, Chem. Eur. J. 2003, 9, 5962.
- [12] a) E. T. White, J. Tang, T. Oka, *Science* **1999**, *284*, 135; b) O. Asvany, P. Kumar, B. Redlich, I. Hegemann, S. Schlemmer, D. Marx, *Science* **2005**, *309*, 1219; c) X. Huang, A. B. McCoy, J. M. Bowman, L. M. Johnson, C. Savage, F. Dong, D. J. Nesbitt, *Science* **2006**, *311*, 60.
- [13] a) A. D. Zdetsis, J. Chem. Phys. 2007, 127, 014314; b) X. Gu, S. Bulusu, X. Li, X. C. Zeng, J. Li, X. G. Gong, L. S. Wang, J. Phys. Chem. C 2007, 111, 8228.
- [14] a) W. A. de Heer, *Rev. Mod. Phys.* **1993**, *65*, 611; b) I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, H. Matsuda, *Int. J. Mass Spectrom. Ion Process.* **1985**, *67*, 229; c) E. Janssens, S. Neukermans, P. Lievens, *Curr. Opin. Solid State Mater. Sci.* **2004**, *8*, 185.
- [15] E. Janssens, H. Tanaka, S. Neukermans, R. E. Silverans, P. Lievens, New J. Phys. 2003, 5, 46.
- [16] a) M. Kohout, F. R. Wagner, Y. Grin, Int. J. Quantum Chem. 2006, 106, 1499; b) F. R. Wagner, V. Bezugly, M. Kohout, Y. Grin, Chem. Eur. J. 2007, 13, 5724.
- [17] Y. Gao, S. Bulusu, X. C. Zeng, J. Am. Chem. Soc. 2005, 127, 15680.
- [18] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, J. Am. Chem. Soc. 1996, 118, 6317.

Received: September 3, 2008 Published online on November 12, 2008