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We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar
molecules using evolutionary strategies. In a Stark-decelerator beamline, pulsed electric fields are used to
decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration
and trapping process is determined by the exact timings of the applied electric field pulses. Automated opti-
mization of these timings yields an increase of 40% of the number of trapped OH radicals.
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I. INTRODUCTION

Analogous to the interaction of charged particles with
electric fields in a linear accelerator �1�, the interaction of
neutral polar molecules with electric field gradients can be
used in a Stark decelerator �2� to accelerate, decelerate, or
guide a molecular beam. Using arrays of electric field elec-
trodes that are switched to high voltage at appropriate times,
bunches of state-selected molecules with a computer-
controlled velocity and with a low longitudinal temperature
can be produced. This is advantageous in any molecular
beam experiment where the velocity distribution of the mol-
ecules is an important parameter. When combined with an
electrostatic trap, the Stark-deceleration technique offers the
possibility to confine rovibronic ground-state molecules for
times up to seconds �3,4�. This holds great promise for the
study of molecular interactions at the high densities and the
�ultra�low temperatures that can ultimately be achieved �5�.

The efficiency of the deceleration and trap-loading pro-
cess critically depends on the exact timings of the high-
voltage pulses. In a typical deceleration and trapping experi-
ment, a sequence of more than 100 high-voltage pulses is
applied to the various elements in the beamline. The time
sequence that is used is inferred from a detailed knowledge
of the electric fields in the decelerator and trap region, and
the Stark effect of the molecule of interest. This, however,
does not account for possible deviations from an idealized
description of the experiment, such as, for instance, mis-
alignments of the electrode arrays and instabilities of the
applied high-voltage pulses. Furthermore, these calculations
are based on a one-dimensional model to describe the longi-
tudinal motion, while the transverse motion of the molecule
effects the efficiency of the decelerator �6�. A manual opti-
mization of the time sequence is practically impossible for
this complicated and large parameter space. Here, we dem-
onstrate the successful implementation of an evolutionary
algorithm for the automated optimization of a Stark-
decelerator beamline.

Evolutionary algorithms �EA�, mimicking the biological
principles of evolution, have been frequently used for auto-
matic optimization of experimental problems with a large
parameter space and noisy feedback signals. As early as the
1960s, three independent developments started with the in-
troduction of evolutionary strategies �ES� by Rechenberg and
Schwefel �7–9�, evolutionary programming �EP� by Fogel,
Owens, and Walsh �10,11�, and genetic algorithms �GA� by
Holland �12,13�. A nice introduction to the field of evolution-
ary computing and its different dialects is given by Eiben and
Smith �14�.

In many branches of atomic and molecular physics, feed-
back control experiments have been performed; see, for ex-
ample, Ref. �15�, and references therein. Since the proposal
�16� and application �17� of learning loops to optimize fem-
tosecond laser pulse shapes �18� for the control of quantum
dynamics in the 1990s, a large number of experiments on the
coherent control of atomic and molecular dynamics have
been performed �19–21�.

In this work, we use evolutionary strategies for the feed-
back control optimization of the time sequence of high-
voltage pulses that are applied to the Stark decelerator and
trap. The experiments have been performed using a pulsed
molecular beam of OH radicals in the low field seeking
X 2�3/2 , v=0, J=3/2 , M�=−9/4 state, for which Stark
deceleration �22� and electrostatic trapping �4� had previ-
ously been demonstrated. The automated optimization results
in an increase of up to 40% of the number of trapped OH
radicals.

II. EXPERIMENTAL SETUP

A. Stark deceleration and trapping

Molecules possessing an electric dipole moment will gain
Stark energy upon entering an electric field, when in an ap-
propriate quantum state. This gain in Stark energy is com-
pensated by a loss in kinetic energy. If the electric field is
switched off before the molecules have left the field, they
will not regain the lost kinetic energy. In a Stark decelerator
�2,23�, this process is repeated by letting the molecules pass
through multiple switchable electric field stages. In this way,
molecules can be decelerated and brought to a standstill.
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The experimental setup is schematically shown in Fig. 1,
and is described in detail elsewhere �24�. In brief, a pulsed
beam of OH radicals is produced by photodissociation of
HNO3 that is co-expanded with Xe from a pulsed solenoid
valve. The mean velocity of the beam is around 360 m/s
with a velocity spread �full width at half-maximum� of 15%.
After the supersonic expansion, most of the OH radicals in
the beam reside in the lowest rotational �J=3/2� level in the
vibrational and electronic ground state X 2�3/2 ,v=0. The
molecular beam passes through a skimmer with a 2-mm-
diam opening and is transversely focused into the Stark de-
celerator using a short pulsed hexapole. The Stark decelera-
tor consists of an array of 109 equidistant pairs of electrodes,
with a center-to-center distance of 11 mm. The decelerator is
operated using a voltage difference of 40 kV between oppos-
ing electrodes, creating a maximum electric field strength on
the molecular beam axis of about 90 kV/cm. A kinetic en-
ergy of 0.9 cm−1 is extracted from the OH molecules per
deceleration stage �the region between adjacent pairs of elec-
trodes�, and part of the beam is decelerated from 371 to
79 m/s after 101 stages. In the remainder of this paper, these
first 101 stages will be referred to as decelerator 1. The last
seven stages of the decelerator, referred to as decelerator 2,
are electronically and mechanically decoupled from decel-
erator 1, and are used at a lower voltage difference of 30 kV.
Here, the molecules are decelerated further to a velocity of
21 m/s, prior to the loading of the packet into the electro-
static trap. The trap consists of two hyperbolic endcaps and a
ring electrode. To load the molecules into the trap, its elec-
trodes are switched from an initial loading configuration to a
trapping configuration. The loading configuration creates a
potential hill that is higher than the kinetic energy of the
molecules. The OH radicals, therefore, come to a standstill
while flying into the trap. At this moment, the electrodes are
switched to the trapping configuration, creating a field mini-
mum in the center of the trap.

The number of trapped OH radicals as well as the tem-
perature of the trapped gas critically depend on the details of
the trap-loading sequence, and in particular on the velocity
with which the molecules enter the trap �4�. If this velocity is
chosen such that the molecules come to a standstill exactly at
the center of the trap �v=15 m/s�, a distribution correspond-
ing to a temperature of 50 mK can be reached. If this veloc-
ity is larger, the molecules come to a standstill past the center
of the trap, and the final temperature is higher. The reduced
spreading out of a faster beam while flying from the last
stage of the decelerator to the trap, however, results in a
larger number of trapped molecules. The velocity of 21 m/s
and the subsequent trap-loading sequence that is used as ref-
erence for the optimization in the present experiment are
identical to the trap-loading that was used in previous OH
trapping experiments �4�. It results in a temperature of the
trapped molecular packet of about 450 mK, an estimated
number density of 107–108 molecules per cm3, and a trap-
ping lifetime of 1.6 s.

The OH radicals are state selectively detected in the trap
using a laser-induced fluorescence �LIF� detection scheme.
The 282 nm uv radiation of a pulsed dye laser excites the
A 2�+ ,v=1←X 2�3/2 ,v=0 transition. A photomultiplier
tube �PMT� is used to measure the resulting off-resonant
fluorescence. In the experiments reported here, the repetition
rate of the experiment is 10 Hz and for every datapoint 64
successive measurements are averaged. The signal-to-noise
ratio of the trapping experiment under these conditions is
about 20.

B. Feedback control optimization

As described in Sec. II A the individual timings in the
time sequences applied to the machine are very critical. Gen-
erally, initial time sequences are calculated based on a theo-

FIG. 1. Scheme of the experi-
mental setup. A pulsed beam of
OH radicals with a mean velocity
of 360 m/s is produced via
ArF-laser photodissociation of
HNO3 seeded in Xe. The mol-
ecules pass through a skimmer, a
hexapole, and a Stark decelerator
and are subsequently confined in
an electrostatic trap. State-
selective LIF detection is per-
formed inside the trap. A sche-
matic representation of the time
sequence of high-voltage pulses is
shown at the bottom of the figure,
including selected indices of the
switching times; see text for
details.
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retical model of the experiment and will be referred to as
calculated time sequences throughout this paper.

For the feedback control optimization, the LIF intensity of
trapped OH molecules, as described above, is used. To avoid
effects from the oscillations of the molecular packet inside
the trap that appear during the first milliseconds after switch-
ing on the trap �see Fig. 3 of �4� and Fig. 4 of this paper�, the
LIF intensity is measured after 20 ms trapping time. This
measurement of the OH density in the trap is used as objec-
tive function �fitness� in the feedback control algorithm.
Since the lifetime of the OH radicals confined in the trap is
as long as 1.6 s, the number of detected OH molecules after
20 ms is still �98% of the maximum value. Because the LIF
signal at that detection time is practically constant over pe-
riods much longer than the timing changes due to the feed-
back control algorithm ��1 ms�, pulsed laser excitation at a
fixed time can be applied for the molecule detection. Note
that in the feedback control loop implemented here, we use
the result from previous experimental runs as feedback for
following ones.

This given problem requires the optimization in a large
parameter space, which at the same time can only be
sampled by a slow and noisy evaluation. For such problems,
evolutionary algorithms are generally a good choice and
have been applied successfully in many fields. The indi-
vidual parameters to be adjusted are the timings ti that deter-
mine the exact switching of the high voltages energizing the
deceleration and trapping electrodes. For the given experi-
ment, this results in 111 parameters to be optimized. For a
detailed depiction of the timing numbering, see Fig. 1. To
reduce the high dimensionality of the parameter space, we
retracted from optimizing all parameters individually, but en-
coded them in three reduced sets of parameters: The timings
of decelerator 1 and the first four timings of decelerator 2 are
not optimized independently, but described by two sets of
polynomial expansion coefficients. We found that an accu-
rate encoding of the time sequence itself requires a polyno-
mial of high order, i.e., orders larger than 20 for a 5 �s
accuracy. To allow for smaller polynomial orders o1 and o2
for the two parts of the decelerator, we have only encoded
the differences to the calculated time sequence ti− ti,0 in the
polynomial, allowing for considerably smaller expansions,
since they only need to describe deviations from the theoret-
ical timings. For decelerator 1, one obtains timings ti with
i=1–102,

ti = ti,0 + �
j=0

o1

pj+1�i − 1� j , �1�

and for decelerator 2 timings ti with i=103–106,

ti = ti,0 + �
j=0

o2

pj+o1+2�i − 103� j . �2�

The remaining five timings ti for the last deceleration stages,
and the trap-loading and trapping configurations, which are
the most critical timings, are optimized individually and in-
dependently. To decouple them from the changes of earlier

timings, they are encoded as the time difference to their re-
spective preceding timing, i.e., we use

�ti = ti − ti−1 = pi+o1+o2−104 �3�

for i=107–111. The complete parameter vector used in the
optimization is then encoded as

P� = �p1,p2, . . . ,po1+o2+7�T � �R+�o1+o2+7. �4�

Typically we have used polynomials of order o1=2 for de-
celerator 1 and order o2=1 for decelerator 2, resulting in a
parameter vector of length ten. In this way, the dimension of
the parameter space is reduced by one order of magnitude
compared to the initial one, while control over the whole
beamline is maintained by the feedback loop.

With the intuitive representation of the individuals of the
optimization problem as a vector of real numbers over a
continuous parameter space, the choice of evolutionary strat-
egies is a natural one. ES is an EA dialect that uses a repre-
sentation of real-valued vectors and generally uses self-
adaptivity �14�. In the experiments described here, we used
the EVOLVING OBJECTS �EO� framework �25,26� implementa-
tion of the ES. As a trade-off between problem size in the ES
and theoretical convergence, the eoEsStdev ES strategy, apply-
ing uncorrelated mutations with individual step sizes, was
used ��14�, Sec. 4.4.2�. In this self-adaptive strategy, the
genotype is a vector of real numbers containing the actual
optimization parameters as well as individual mutation
widths 	i for every parameter pi.

The initial optimization metaparameters used were based
on the suggestions by Eiben and Smith �14� and successively
adopted according to their success in the experiments. In the
most successful optimization runs, the following parameters
were used: typically a population size of five or ten individu-
als was used, with population sizes up to 40 in some runs.
Typically 30 offsprings were generated every generation,
with values ranging from the actual population size to six
times the population size over different runs. Generally, an
offspring-to-population ratio of seven is assumed to work
best, but the theoretical advantage is apparently outweighed
by the slowness of the evaluation and the corresponding ex-
perimental difficulties in this experiment. The most success-
ful mutation and crossover rates were 75% and 50%, respec-
tively, but this seems not to be critical and was not tested
extensively. Parent selection was done using the ordered se-
quential selector. We have used discrete global recombina-
tion for the experimental parameters and intermediate global
recombination for the mutation widths 	. For survivor selec-
tion, the �
 ,�� approach worked best, as it seems to handle
noise and drifts in the experimental conditions well, as is
generally assumed ��14�, Sec. 4.7�. Elitism was not applied.

This machine learning is implemented in our data-
acquisition system �KouDA� using ES within an automatic
feedback control loop.

III. EXPERIMENTAL RESULTS

In Fig. 2, the normalized average fitness — the LIF signal
from OH radicals in the trap — per generation is plotted
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against the generation number for three different optimiza-
tion runs, referred to as runs A, B, and C. The measured
fitness values are normalized with respect to the fitness ob-
tained for the calculated time sequence under the same ex-
perimental conditions. In each run, different strategy param-
eters for the algorithm or different initial populations are
used, as detailed below. Typically, a complete optimization
run corresponds to the evaluation of many hundred generated
time sequences and takes about 1–2 h of measuring time. In
run A �squares�, the calculated time sequence is used as a
starting point for the optimization. From this sequence, an
initial population is created with parameters that are ran-
domly picked out of a Gaussian distribution around the cal-
culated values. The last parameter, �t111, has been decreased
by 27 �s based on the outcome of earlier runs �not pre-
sented�. As a result of these small changes, the first genera-
tion has a slightly lower fitness. After nine generations, the
average fitness of the generation has increased to the value of
the calculated time sequence. For later generation numbers,
the fitness increases further and reaches a maximum of 1.3
after 46 generations. In the measurement represented by
curve B �asterisks�, an initial population was created from
the same calculated time sequence, but nine out of ten pa-
rameters were set off by 3–20 %. Hence, the first-generation
time sequences lead to a normalized fitness of less than 0.1.
After 11 generations, this number already reaches 1 and is
further optimized to 1.4 in generation 37. The optimization
runs A and B result in a number of trapped OH radicals that
is 30–40 % higher than the number that is obtained with the
calculated time sequence. Other experiments in which differ-
ent initial populations were chosen led to a similar increase
in the number of trapped molecules.

The initial population and strategy parameters, which are
used in the optimization run shown in curve C �triangles�, are

very similar to the parameters that were used in curve A.
Curve C initially shows �as expected� an optimization similar
to that of run A and reaches a maximum of 1.2 after around
nine generations. From then on, however, the fitness starts
decreasing. This is due to a drift in the production of OH
radicals during this experimental run, which was confirmed
by an independent measurement after the optimization run.
In spite of this drift, the algorithm still converged and the
time sequences obtained for the last generation are compa-
rable with time sequences obtained in runs A and B �vide
infra�.

Other experiments using different strategy parameters for
the ES, for example different population sizes or different
settings for mutation and crossover rates, did lead to a simi-
lar increase in the number of trapped molecules of 35–40 %.
Furthermore, the values of corresponding parameters from
the optimized time sequences are generally comparable.
These results show not only that the algorithm is able to
optimize the number of trapped molecules, but also that it
finds a reproducible maximum in the parameter space, even
if the initial parameters deviate significantly or external fac-
tors disturb the experiment.

The evolutions of three of the most important parameters,
recorded during optimization run A, are shown in Fig. 3.
Figures 3�a� and 3�b� show �t108 and �t109, respectively.
These parameters define the switching times of the last two
stages of decelerator 2 and thus determine the exact velocity
with which the molecules leave the decelerator. Figure 3�c�
depicts the evolution of �t111, the time interval, during which
the loading configuration of the trap is used. At the end of
this time interval, the trapping configuration is switched on.
For reference, the horizontal lines in the plots denote the
mean value of the respective parameter in the first genera-
tion, which are equivalent to the parameters in the calculated
time sequence. Although the fitness depends very critically
on these specific timings, the evolution of the parameters
shown in Fig. 3 is typical for the evolution of less critical
parameters as well.

For all three parameters, the mutation widths 	, repre-
sented by the vertical bars, are initially large and the param-
eters scatter over a relatively large range. As the generation
number increases, this mutation width decreases and the pa-
rameters converge. Parameter �t111, however, converges ini-
tially to two values, one centered around 1662 �s, the other
around 1674 �s. This shows that the parameter space con-
tains multiple local maxima, and that multiple pathways in
the parameter space can be followed. Only after 27 genera-
tions, exclusively individuals with a value for �t111 of about
1674 �s survive the selection. As most runs converge to
similar values, this seems to be the global optimum, at least
for the parameter space searched.

From each feedback control experiment, a set of opti-
mized time sequences is obtained. It is clear from the opti-
mized time sequences that no different mode of operation for
the Stark decelerator is obtained and that the previous theo-
retical understanding �23� is confirmed by these experiments.
Moreover, comparing the time-of-flight �TOF� profiles of OH
radicals at the center of the trap, which are measured using
the calculated and optimized time sequences, a physical in-
terpretation of the differences can be deduced. The typical

FIG. 2. �Color online�. For three different optimization runs,
each with different initial parameters, the normalized average fit-
ness per generation is plotted. Curves A �squares� and B �asterisks�
show an increase of 30% and 40%, respectively. During the mea-
surement represented by curve C �triangles�, drifts in the experi-
mental conditions, namely the backing pressure of the supersonic
expansion, occurred and led to reduced signal intensities, as was
confirmed after the optimization run.
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result of such a measurement is shown in Fig. 4. The black
and gray curves are measured using the calculated and opti-
mized time sequences, respectively. The lower two curves
show the TOF profiles of the OH molecules as they arrive in
the trap when no voltages are applied to the trap electrodes.
The positions and widths of the arrival-time distributions are
a measure for the longitudinal velocity distributions of the
decelerated OH beams that exit the decelerator. Compared to
the calculated time sequence, the optimized sequence results
in an arrival-time distribution that is shifted 180 �s to the
left, indicating that the molecular packet arrives with a
higher mean velocity of 25 m/s, instead of 21 m/s, in the

trap. Assuming the transverse and longitudinal velocity
spreads are unaltered for the optimized time sequence, the
beam spreads out less in all directions while traveling the
distance from the end of the decelerator to the trap, and the
corresponding arrival-time distribution is narrower. The inte-
gral of the peak of the arriving packet �lower curves� is al-
ready enhanced by about 40%, reflecting the reduced trans-
verse spreading out of the beam and hence the reduced
transverse losses while entering the trap.

The upper two curves show the density of OH radicals at
the center of the trap when the trap-loading and trapping
electric fields are applied. The optimized time sequence
�gray curve� leads to a more pronounced oscillation in the
TOF profile than the calculated one �black curve�. This is
readily understood from the higher initial velocity of the
molecules. The molecules enter the trap too fast, and come to
a standstill past the center of the trap. The molecular packet
is poorly matched to the trap acceptance, and the width of
the velocity distribution of the trapped molecules will there-
fore be larger as well. These results confirm, as was already
concluded earlier �4�, that a large number of molecules in the
trap and a low temperature of the trapped packet of mol-
ecules are conflicting goals with the present design of the
trap: the required low velocity to match the decelerated mo-
lecular packet with the acceptance of the trap results in a
large transverse spreading out of the packet prior to entering
the trap.

In principle, one could also aim a feedback control opti-
mization at determining a time sequence for a trapped mo-
lecular packet with a temperature as low as possible, or a
weighted combination of the number of trapped molecules
and a minimal temperature, by using an appropriate experi-

FIG. 3. The evolution of three of the parameters during optimi-
zation run A �see Fig. 2�: �a� �t108, �b� �t109, �c� �t111. The squares
mark the value of individual parameters and the error bars represent
the corresponding mutation widths 	. Only the five parameters se-
lected for a new population �as described in Sec. II B� are shown
and they are grouped by generation. Individual parameters within a
population are slightly offset horizontally to allow the observation
of individual values and their error bars. At the beginning, a large
range of the parameter space is searched, whereas later in the opti-
mization the 	’s are reduced by the algorithm and convergence is
reached. The horizontal lines denote the mean value of each param-
eter in the first generation.

FIG. 4. Density of OH radicals at the center of the trap as a
function of time after their production. The lower two traces are the
intensities of molecules passing through the center of the trap with-
out any voltages applied to the trap electrodes. The upper traces are
measurements for trapping experiments. The black traces are mea-
sured with the calculated time sequence applied to the machine,
whereas the gray traces are measured with one of the generated,
optimized time sequences obtained from automated optimization
using evolutionary strategies.
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mental objective function. One could, for example, measure
the number of molecules at the center of the trapping region
after a predefined time of free expansion of a previously
trapped packet. That would result in a combined determina-
tion of the peak density of the trapped molecular packet and
its temperature, where the time delay between switching off
the trap and the detection of the molecular density would
weigh the two contributions to the fitness. Alternatively, if
the spatial density distribution of the trapped molecular
packet would be measured for every generated time se-
quence, direct information on the number of trapped mol-
ecules and their temperature is obtained, allowing us to de-
fine any objective function based on these two important
measures. Furthermore, when using continuous detection to
allow for measuring the complete time-of-flight profile from
the nozzle to the detection region for every molecular packet,
the integrated intensity and the longitudinal temperature can
be deduced offline by the optimization algorithm �30�. This
allows us to optimize any Stark-decelerator beamline, even
without trapping.

Besides the timings of the high-voltage pulses, one can
also optimize other computer controllable experimental pa-
rameters, such as the voltages that are applied to the experi-
ment, laser frequencies, etc. In general, evolutionary algo-
rithms can be used for the optimization of any fitness
function that can be determined experimentally. This in-
cludes, for example, the ratio of molecules simultaneously
trapped in two different quantum states or the ratio of decel-
erated and actually trapped molecules. More generally, the
method can also be applied to other atomic and molecular
beam experiments, such as optimizing the timings or volt-
ages in multipole focusers �27� or the currents in a Zeeman
slower �28�.

IV. CONCLUSIONS

In this paper, we describe the successful implementation
of feedback control optimization of the Stark deceleration
and trapping of OH radicals using evolutionary strategies.
The time sequence of high-voltage pulses that is applied to
the decelerator and trap electrodes is encoded as parameter
vector for the algorithm. Starting from an initial time se-
quence based on an idealized representation of the beamline,
the number of trapped OH radicals is increased by 40%. This
enhancement is qualitatively understood in terms of the im-
proved coupling in of the amount of molecules into the trap.

The machine learning approach presented here can be ap-
plied to other Stark-deceleration experiments as well. The
optimization will be especially useful for all experiments in
which very slow molecular beams �v�100 m/s� are ma-
nipulated, for which the exact switching times of the high-
voltage pulses are extremely critical. In general, any
computer-controllable experimental parameter can be opti-
mized using evolutionary algorithms, and any fitness func-
tion that can be determined experimentally can be used as
fitness for the optimization.

Essential to the present experiment is the use of trapped
molecules, which enables the decoupling of the timing for
pulsed laser detection from the optimization. For beamlines
with continuous detection, such a timing can be evaluated
offline and becomes uncritical, thus making feedback control
optimization generally applicable.
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