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Analytic wave model of Stark deceleration dynamics

Koos Gubbels, Gerard Meijer, and Bretislav Friedrich
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
(Received 2 February 2006; published 12 June 2006)

Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decel-
erating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages,
consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come
close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence
of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental
phase velocity N/ 7, with N\ and 7 the spatial and temporal periods of the field. Here we study explicitly the
dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of
motion for the case of single-wave interactions and exploit their isomorphism with those for the biased
pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these
have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a
packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case,
small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental
velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the

analytic “wave model” encompasses all the longitudinal physics encountered in a Stark decelerator.
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I. INTRODUCTION

Achieving an ever better control over both the internal
and external degrees of freedom of gas-phase molecules has
been a prominent goal of molecular physics over the last
decades. Molecular beams, both continuous and pulsed, have
been widely used to produce large densities of molecules in
selected quantum states. In these beams, the longitudinal
temperature of the molecules is typically 1 K, and the mean
velocity of the beam can be varied between about 300 and
3000 m/s by adjusting the temperature of the source or by
using different carrier gases. Control over the spatial orien-
tation or alignment of molecules in a beam has been
achieved by actively manipulating the rotation of the mol-
ecules using electrostatic or magnetic multipole fields as well
as with the help of laser radiation. The application of inho-
mogeneous fields has enabled control over the transverse
motion of the oriented or aligned molecules, and thus their
state selection [1-3].

The control over the longitudinal motion of molecules in
a molecular beam has been greatly enhanced as well. In
1999, it was first demonstrated that an array of time-varying,
inhomogeneous electric fields can slow down a beam of po-
lar molecules [4]. This so-called Stark decelerator for neutral
polar molecules is the equivalent of a linear accelerator
(LINAC) for charged particles. In a Stark decelerator, the
quantum-state specific force that acts on a polar molecule
subject to an electric field is exploited. This force is rather
weak, typically some eight to ten orders of magnitude
weaker than the force that would act on the molecular ion in
the same electric field. This force nevertheless suffices to
provide complete control over the motion of polar molecules,
using techniques akin to those used for the control of charged
particles. This has been explicitly demonstrated by the con-
struction of two different types of linear decelerators [4,5], a
buncher [6], a mirror [7], two different types of traps [8,9]

1050-2947/2006/73(6)/063406(20)

0634006-1

PACS number(s): 32.60.+1i, 32.80.Pj, 45.50.—j

and a storage ring [10] for neutral polar molecules.

A crucial feature of the Stark decelerator is its phase sta-
bility. Phase stability, which is at the core of synchrotron-like
charged-particle accelerators as well [11], enables to hold
together a packet of neutral molecules throughout the Stark-
deceleration process. Phase-stable operation of a Stark decel-
erator, viewed as trapping of neutral molecules in a traveling
potential well, was first explicitly demonstrated in experi-
ments on metastable CO [12]. In that work, as well as in later
publications on the deceleration of various isotopomers of
ammonia, the one-dimensional (1D) equation of motion for
molecules that undergo phase-stable transport was stated
[12-14]. In order to obtain the longitudinal equation of mo-
tion, the Stark energy (potential energy) of the molecules
was expressed as a function of position along the longitudi-
nal decelerator axis, and the change in Stark energy per de-
celeration stage was evaluated. As this treatment did not
yield a priori an expression for the force on the molecules as
a function of time, assumptions about the time dependence
of the force were made in order to arrive, in an intuitive way,
at the equation of motion. The validity of these assumptions
was checked against trajectory calculations, and it had been
concluded that this equation of motion indeed describes cor-
rectly the physics of the phase-stable motion in a Stark de-
celerator [12-14]. Nevertheless, a mathematically rigorous
derivation of the equation of motion and an in-depth analysis
of the complex dynamics in a Stark decelerator was still
wanting.

A description of the (longitudinal) force acting on the
molecules as a function of both their position in the decel-
erator and as a function of time could be obtained by ex-
pressing the spatial and temporal dependence of the electric
fields in the decelerator in terms of a Fourier series [15]. This
description, in which the force has been expressed as an
infinite sum of stationary and counter-propagating waves,
contained all the correct physics, but it was not directly evi-
dent how to connect this description to the trajectory calcu-
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lations or to the actual experiments. In particular, it was not
clear why, in discussing phase stability, it is allowed to only
consider the interaction of the molecules with one of the
infinitely many waves. It was not clear either where the ex-
perimentally observed first- and second-order resonances in
the decelerator—which have a straightforward interpretation
in the intuitive model [16]—come from the Fourier-series
description.

In this paper, we give a detailed description of the longi-
tudinal motion of molecules in a Stark decelerator (or accel-
erator). This description is based on the Fourier analysis of
the force that acts on the molecules as a function of position
and time [15]. The motion of the molecules in phase
space due to any of the interacting waves, as well as due to
their mutual perturbations, is analyzed. A detailed compari-
son with trajectory calculations and experiment has shown
that the “wave model” presented here holds up to all the
scrutiny applied, and provides a complete and accurate de-
scription of the longitudinal dynamics of polar molecules in
a Stark decelerator.

Thus our treatment here is restricted to the motion along
the molecular beam axis. In more recent work, the coupling
between the transverse and the longitudinal motion was in-
cluded, and the transverse stability in a Stark decelerator was
discussed as well [17].

II. FOURIER REPRESENTATION OF THE ELECTRIC
FIELD IN A STARK ACCELERATOR OR DECELERATOR

Figure 1 shows a prototypical switchable field array suit-
able for accelerating or decelerating polar molecules. The
electric fields are generated by field stages (rod-electrode
pairs, cylindrical electrodes, or other) longitudinally sepa-
rated by a distance N/2. In the array, every other field stage
is energized and every other grounded. Which field stages
are energized and which are grounded determines one of two
possible field configurations of the array. Figure 1(a) shows,
for the case of four field stages, the electric fields that are
generated by the two field configurations. The magnitudes of
the electric fields that pertain to the upper and lower field
configuration are shown by the red and blue curves and will
be referred to as the red, ¢,, and blue, ¢, field, respectively.
Also shown is the longitudinal coordinate z. A given field
stage is energized or grounded during a time 7/2, after which
the fields are switched, i.e., the field stages that were ener-
gized become grounded and the field stages that were
grounded become energized. Figure 1(b) shows the alterna-
tion between the red and blue fields as a function of time, ¢.
An energized field stage becomes grounded or vice versa
during a transient time, A7. For A7<< 7, the temporal alterna-
tion between the red and blue fields is square-wave like.

We will now represent the spatial and temporal depen-
dence of the net field, which results from the switching be-
tween the static red and blue fields, by a Fourier series.

We will begin by Fourier expanding the spatial depen-
dence of the red field, which is produced by field stages at
positions z=(i+m))\, with m=0,1,2,3..., see Fig. 1(a). The
strength of the red field is given by
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FIG. 1. (Color online) A prototypical switchable field array that
generates fields suited for accelerating or decelerating polar mol-
ecules. The field stages are longitudinally separated by a distance
N/2. Every other field stage is energized and every other grounded.
There are two possible field configurations. (a) Electric fields gen-
erated by the two field configurations (for the case of four field
stages). The electric fields that pertain to the upper and lower field
configurations are shown by the red and blue curves and are re-
ferred to here as the red, ,, and blue, ¢, fields, respectively. Also
shown is the longitudinal coordinate z; (b) Alternation between the
red and blue fields as a function of time, 7. A given field stage is
energized or grounded during a time 7/2, after which the fields are
switched, i.e., the field stages that were energized become grounded
and vice versa. An energized field stage becomes grounded or vice
versa during a transient time, A7. The figure pertains to the case of
guiding, for which the period 7 is constant. The case of a varying
period is shown in Fig. 2.

]

1
e,(2) = e+ > &, cos(me), (1)

m=1
where g, are the spatial Fourier coefficients and
©=2mz/I\N - 7/2. (2)

The blue field is produced by field stages at positions
Z=(%+m))\, see Fig. 1(a), and so is obtained from the red
field by shifting it by \/2, i.e.

6(2) = sr(z - 5) Lot S 1) costme).  (3)
2 2 m=1

Taking A7=0, the net field, &(z,1), is given by
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FIG. 2. The time dependence of the field pertaining to the case
of deceleration, for which the period 7 is a function of time,
7=17(t). The case of a constant period is shown in Fig. 1. The timing
sequence, generated by Eq. (33), is suitable for decelerating OH
radicals on the (+,1,1) wave with ¢,=53° from an initial velocity
of 370 m/s to a final velocity of 25 m/s in the decelerator pre-
sented in Refs. [17,16]. The upper panel shows the corresponding
dependence of the switching half period, 7(¢)/2. The points mark
the time difference between two subsequent switching times. See
Sec. IV C.

e(z,t)=¢g,(z) for 0 << 772,

e(z,t)=ez) for72<t<r, (4)

see Fig. 1(b).

In order to derive the Fourier representation of the net
field, we will expand Eq. (4) in terms of a temporal Fourier
series. By invoking the “well-known” result for a temporal
square wave [18], the net field can be written as

o(e) = {es(2) + 2,001+ S0 £,(0)]

> ig sin(€9). (5)

€ odd T

where 6 is the temporal phase such that

. 21
0(1) = (1) = ) (6)

with o the angular frequency. While Fig. 1(b) shows a time
dependence of the field with a constant period 7 (which cor-
responds to the so-called guiding, see below), Fig. 2 shows a
time sequence with a varying period 7=7(f) (one which cor-
responds to deceleration). In either case, the square wave
rises and falls when the temporal phase becomes equal to an
integer multiple of 7.
Substitution into Eq. (5) from Egs. (1)—(3) yields
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1 o]
e(z.)=—go+ 2, (- 1)“21’sp cos(pkz)
2 p even

o o

4
PSS A, snkosinen
n odd ¢ odd

1 oo
= e+ > (- 1)!"?g, cos(pkz)

p even

+ E 2 i(_ 1)1/2(n+1)

n odd € oda 1€
><8n(COS ¢+,n,€ — COs ¢—,n,€)’ (7)

where we made use of the identity sin a sin B:%[cos(a
—B)—cos(a+B)], defined the spatial frequency (wave vec-
tor)

k=2m/\ (8)
and introduced the phase
b o =nkz = €0. 9)

Note that p,n,€ are all positive integers.

Equation (7) reveals that the net field consists of a super-
position of stationary and of pair-wise counter-propagating
partial waves. The propagating waves move with well-
defined phase velocities

v 0sd. Lo Lo LN
T (Ondd), mok T m k(o)
¢
= +-V(1) (10)
n

from left to right (+ sign) and from right to left (— sign).
The second line of Eq. (10) defines the fundamental phase
velocity, V(t), which is determined solely by the spatial and
temporal periods N and 7(r).

The path taken here in deriving Eq. (7) is a shortcut of the
route used to derive the same equation in our previous work
[15]. The time dependence of the temporal period or fre-
quency is here emphasized right from the outset.

Note that the spatial Fourier coefficients g, along with the
square-wave time dependence fully characterize the net field.
While the temporal Fourier coefficients fall only as €7, the
spatial ones fall off roughly exponentially with m, i.e.

&,, * exp[— ém], (11)

where £ is a decay parameter which depends on the geometry
of the field array. Hence we can expect waves with small n
and larger € to dominate; as we will see in Sec. V, waves
with n=<5 and € <21 account for all the dynamics observed
so far.

III. POTENTIAL AND FORCE

A molecule with a space-fixed electric dipole moment
(uy={u(e)) subject to field (7) has a Stark energy
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W(z,t) = = (u(e))e(z.1). (12)

In what follows, we will consider molecular states whose
space-fixed electric dipole moment is independent of the
electric field strength; this is the case when the field-
molecule interaction is governed by the first-order Stark ef-
fect. Molecular states whose space-fixed electric dipole mo-
ment (u) is parallel ({(u)>0) or antiparallel ({w)<<0) to the
electric field strength are referred to as high or low-field seek-
ing states, respectively. Whereas the eigenenergy of high-
field seekers decreases with increasing field strength, it in-
creases for the low-field seekers. As a result, in an
inhomogeneous electric field, such as &(z,1), high-field seek-
ers seek regions of maximum, and low-field seekers seek
regions of minimum field strength where their eigenenergy is
minimal. In the net field (7), the Stark energy becomes

o

Wo+ > (- 1)'?*W, cos(pkz)

p even

1

W(z,1) = >

oo oo 2
+ 2 > = (=)W (cos by

n odd ¢ odd T
—cos ¢_,¢) (13)
with
W,=— (e, i=12,3,... (14)

We note that in the case of nonlinear Stark effect [19], Eq.
(13) can still be used to represent the Stark energy, although
Eq. (14) is no longer valid. In order to obtain the correct
Fourier coefficients W;, we need to first numerically calculate
the Stark energy of a molecule in the two electric-field con-
figurations &,(z) and &,(z). Subsequently, we can Fourier ex-
pand the Stark energy, just as we expanded the electric field,
and extract the W; coefficients, which leaves Eq. (13) intact
[20].

Since the Stark energy plays the role of a potential for the
motion of the molecules, the force, F(z,t), that the field ex-
erts on a molecule of mass M is given by

dW(z,1)

Flz)=— — == 2 MA,sin(pkz)
dz p even
+ 2 2 MA,(sin ¢, —sin¢_, o), (15)
n odd ¢ odd
where
_ 12 p_k
Ap = (_ 1) pMWp’
2nk
A = (-1 1/2(n+1)_W ) 16
e = DR, (16)

Thus we see that a molecule subject to force (15) is acted
upon by an infinite multitude of stationary as well as propa-
gating and counter-propagating waves. However, as we will
see in Sec. IV, only a single wave governs the molecule-field
interaction. Which wave it is is determined by the difference
between the wave’s phase velocity and the velocity of the
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molecule: only a wave whose initial phase velocity comes
close to the initial velocity of the molecule can become para-
mount. In order to find out how close this needs to be, we
must do the dynamics.

IV. DYNAMICS OF THE INTERACTION OF MOLECULES
WITH A SINGLE WAVE

In this section we will examine the dynamics of the inter-
action of a bunch of molecules with a single wave. After
developing a formalism for describing such an interaction
and discussing its dynamics, we will be able to show why, to
an excellent approximation, the effect of all the other waves
can be neglected. In Sec. V we will consider the full-fledged
dynamics and evaluate explicitly the perturbing effects due
to other waves. We will also tackle the (marginal) effects due
to interfering waves which interact jointly with a bunch of
molecules.

A. Force exerted by an arbitrary wave

As we can glean from Egs. (7), (13), and (15), an arbitrary
propagating wave can be labeled by a pair of odd integers, n
and ¢, and by its propagation direction (+ for left to right or
— for right to left), i.e., by (x,n,€). Since the molecules
move from left to right by convention, in what follows we
will consider waves moving from left to right. Thus such an
otherwise arbitrary wave travels from left to right with a
phase velocity

%
Vn,€ = V+,n,€ =", (17)
nk

cf. Eq. (10), and exerts a force on a molecule given by

Fn,€(z’t) = MAn,{’ sin ¢n,€ (18)
with the phase
d)n,f = ¢+,n,€ =nkz - 0. (19)
The corresponding acceleration then becomes
. Pz .
e = nt = ij =An,€ s ¢n,€' (20)

B. Synchronous molecule and its velocity

A key concept in tackling the molecule-wave interaction
is that of a synchronous molecule. This is defined as the
molecule which maintains a constant (synchronous) phase

Py = (d’n,(ﬁ)s =nkz,— €6 = const. (21)

with respect to a given wave (n,€) throughout the accelera-
tion or deceleration process—no matter what, see Fig. 3.

It should be noted that the definition of the synchronous
phase given here is slightly different from the definition that
has been used in earlier descriptions of phase stability in a
Stark decelerator [12—14,16]. In these earlier studies the syn-
chronous phase was defined in terms of the position of the
synchronous molecule relative to the electrodes, and this po-
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non-synchronous
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B = nkz —10

FIG. 3. (Color online) A synchronous and a nonsynchronous
molecule  subjected to  the field e(z,f) of a
(+,n,€) wave moving at a phase velocity V, ¢ (all motion is from
left to right). The change of the velocity, vy, of a synchronous mol-
ecule is such that its phase ¢, with respect to the traveling field
remains constant. This is the case when v;=V, ,. The velocity, v, of
a nonsynchronous molecule and its phase, ¢, change with time.
Also shown are the spatial coordinates of the synchronous and non-
synchronous molecule, z, and z, respectively.

sition was required to be the same every time the electric
fields were switched from one configuration to the other.
Although this definition takes the full spatial dependence of
the Stark interaction into account, it only specifies the syn-
chronous phase at the moment when the fields are switched.
In the case when the spatial and temporal dependence of the
Stark interaction is governed by a single wave (n,€), the
definitions are equivalent.

From Eq. (18) it immediately follows that the synchro-
nous molecule is acted upon by a constant force

(Fn,f)s = MAn,( sin (b‘y (22)
and thus has a constant acceleration

(an,f)x = An,€ sin ¢s =d,. (23)

From Eq. (23) we see that the acceleration/deceleration rate
can be controlled by tuning the synchronous phase. As fol-
lows from Eq. (21), at /=0, when the fields are switched for
the first time, the synchronous phase is simply

bzt =0) = nkz,. (24)

Therefore, the synchronous phase can be tuned by launching
the swirching sequence (or burst) when the synchronous
molecule has the desirable longitudinal coordinate z;. The
subsequent switching times between the two field configura-
tions can always be chosen such that the synchronous mol-
ecule will keep the same phase.

With a tunable acceleration or deceleration, the initial ve-
locity of the synchronous molecule can be increased or de-
creased to any value

v(t) =v,(t=0) +ay. (25)

C. Phase velocity, temporal phase, and switching
sequence

In order to keep the phase of the synchronous molecule
constant during acceleration or deceleration, the phase veloc-
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ity of the wave that interacts with the molecule needs to be
varied. This is done by applying a variable switching se-
quence to the field array as the molecule progresses through
it. In other words, the temporal frequency or period of the
applied field is made time dependent, w=w(z) or 7=17(z). As
a result, the phase velocity becomes also time dependent, cf.
Eq. (10). In this paragraph we will show that the phase ve-
locity of the wave is always equal to the synchronous veloc-
ity of the molecule, as one would expect. Furthermore, we
will evaluate the temporal phase and hence the timing se-
quence needed to keep a molecule synchronous.

From the definition of the synchronous phase, Eq. (21),
we obtain

¢=0=nkz,— €0 (26)
from which it follows that

€h
I =Ug="7. 27
— (27)
By comparing this result with Eq. (17), we see that, indeed,
the phase velocity is equal to the synchronous velocity

v,=V, . (28)

In what follows we will use the following notation for the
initial phase and synchronous velocities

Cowir=0) € X\
vs(0)=Vn,€(0)=; (tk )=;T(t=0)

¢
n

In order to derive an expression for the temporal phase
consistent with the condition of a constant synchronous
phase, we invoke Eq. (21)

nkz;, ¢y
f=—2_ =
{ 4

(30)

and substitute for z; from the first integral of Eq. (25)

b

1, 1, ¢ ‘
Z‘yziast +vs(0)t+zo=§ast +;V0t+ " (31)

where the initial position, z,, was obtained from Eq. (24).
This yields a temporal phase

nkz, ¢, 1n
O=—"-"=——kat +kVy, 32
¢ T T2 T (32
which pertains to a square wave that falls or rises only when
the following periodic condition is fulfilled:

1
6(t)=E%kast2+kV0t=q7r g=0,1,2,...  (33)

Equation (33) defines exactly that switching sequence which
is required in order to keep the phase of the synchronous
molecule constant and hence for achieving a constant accel-
eration or deceleration. The corresponding switching times
are given by solving Eq. (33) for #(g), with the result
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1/2
t(q)=€&{<m+l) —1], (34)

which is identical with a result obtained earlier [21]. We note
that since we determine 6(z), via Eq. (33), before computing
w(?) or 7(1), a need to evaluate the integration constant of Eq.
(6) never arises.

Figure 2 shows a switching sequence, generated by Eq.
(33), which is suitable for decelerating OH radicals.

D. Equation of motion

The equation of motion of a nonsynchronous molecule
subjected to wave (n,€) is

Fn €
= =A, ¢Sl , 35
M n,¢ S ¢n,€ ( )

Z=

where we made use of Eq. (18). For the synchronous mol-
ecule we have

Fn 14 .
Zg=—-=A . 36
s M nd sm ¢s ( )
A combination of Egs. (35) and (36) yields
Z- Zs =A11,€(Sin ¢n,€ —sin ¢3) (37)

The left-hand side of Eq. (37) can be recast in terms of the
nonsynchronous and synchronous phase. We have, with the
help of Eq. (19)

&n.o(t) = (1) = A, (1) = nkz (1) — £ 6(1) — [nkzy(1) — €£6(1)]
= nk[z(t) - z,(t)] = nkAz(), (38)

where Az=z-z, is the longitudinal distance between the
nonsynchronous and synchronous molecule, see also Fig. 3.
Equation (38) implies the following equations for the time
derivatives:

buo(D) — D) = A, (1) =nk(z - z,) = nkAz  (39)

and

buo(t) = d(1) = A, () = nk(: - Z,) = nkAz.  (40)

However,

A, (1) = b, o(1) (41)
and
A(ﬁn,f(t) = (.i)n,f(t) (42)

since, by definition, ¢(f)=d,(¢)=0.
Substituting Egs. (40) and (42) into Eq. (37) finally yields

(.ﬁn,f = an,((Sin d’n,({ - sin ¢s) (43)
with
2n°k?
= nkA, ¢ = (- 1) ——w 44
ay, ¢ NKA, ¢ ( ) M n ( )
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FIG. 4. (Color online) Realizations of a plane biased pendulum:
a bob of mass m is fixed to a rigid suspension of length r which is
attached to an axle of diameter R; wound around the axle is a string
that carries a bias of mass M. A plane biased pendulum is a one-
dimensional system, whose only coordinate is the angle ¢ between
the vertical axis z and the bob suspension r. The stable and unstable
equilibrium points are located symmetrically with respect to a plane
perpendicular to the direction of the z axis at angles ¢, and 7— ¢,,
respectively. The stable-equilibrium angle ¢, of the biased pendu-
lum corresponds to the synchronous phase of the Stark
accelerator/decelerator.

E. Solving the equation of motion

Relating the motion of all molecules to a molecule which
maintains a constant (synchronous) phase with respect to a
given wave not only greatly simplifies the equation of mo-
tion but reduces it to a form which is isomorphic with the
equation of motion of a biased pendulum, see Fig. 4. Since
the biased pendulum problem can be well understood—both
mathematically and intuitively—it offers invaluable lessons
about the Stark accelerator/decelerator dynamics [15].

Both the biased-pendulum problem and the
accelerator/decelerator have the following Lagrangian:

Stark

. 1 .
E((f)’ d)) = 5 77¢2 - ”701n,€(COS d) + ¢ sin ¢s)7 (45)

where 7 and «, ¢ are constants different for the two prob-
lems. The application of Lagrange’s equation

oL  daL
= 2= (46)
dp dt )

immediately yields the correct equation of motion, namely

Eq. (43).
The first term of the Lagrangian (45) is the kinetic energy,
the second term is the potential

V(¢) = nan,€(cos ¢+ ¢) sin d)v)
2w

“(cos ¢+ ¢ sin ¢,
7t

= Vp() + V(eh). (47)

In writing down the potential we split it into the pendulum
part, Vp(¢), and the bias part, V(). These are plotted for

— (_ 1)1/2(n+l)
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four different cases (e, positive/negative, acceleration/
deceleration) in Fig. 5. The figure provides a valuable insight
into the dynamics of the studied system(s). Like a simple
pendulum, a biased pendulum has two equilibrium points, a
stable and an unstable one, the latter called here a tipping
point. These are located, symmetrically, at ¢=¢, and
¢=1— ¢, and correspond to the positions of the minimum
and maximum (modulo 277) of the potential (47), as revealed
by taking the first and second derivatives of the potential
with respect to ¢, see also Ref. [15]. The unstable equilib-
rium point coincides with the outermost turning point, ¢,
Angles in excess of ¢,,, result in a nonuniform accelerating
rotation of the pendulum about its axle, propelled by the
falling bias. For the accelerator or decelerator this means that
nonsynchronous molecules whose phase would exceed the
tipping point will fall out of the potential well due to V(¢)
and thus be lost. Exceeding the tipping point amounts to
disengaging from the acceleration or deceleration process.
On the other hand, the inner turning point, ¢;,, cannot be
exceeded, since the potential at ¢p<<¢,, is repulsive. The
phase of a nonsynchronous molecule that is confined by the
potential periodically oscillates about the synchronous phase,
whose value is set by the position of the potential’s mini-
mum. We also note that for higher acceleration or decelera-
tion rates, the potential minimum shifts correspondingly and
the well becomes shallower, see Fig. 6. This leads to a re-
duction and shifting of areas where stable oscillations of the
nonsynchronous phase about the synchronous one can take
place, i.e., the areas of the so-called phase stability. In what
follows we will evaluate the phase-stable areas of the phase
space exactly.

Multiplying the equation of motion (43)—where we
dropped the n,€ subscripts from the phase for notational

simplicity—by ¢ and integrating once over time

fé[)q'bdt=an,€f sin ¢d>dt—an,gf sin p,pdt  (48)
yields

(1'52 == zan,g(COS ¢ + ¢ sin ¢v) + B (49)

or

d) == [_ zan,e(cos d) + ¢ sin ¢s) + B]l/z (50)

with B an integration constant. Equation (50) represents the
trajectory of a nonsynchronous molecule through phase
space (¢, @).

For a bound motion, B is determined by the condition
=0, which defines the value ¢,, of the nonsynchronous
phase at the outer furning point, see Figs. 5 and 6. Thus

B = 2“}1,€(COS d)aut + ¢0ut sin d)s) . (51)

A special case occurs when the turning point reaches its
maximum, tipping value. This determines the separatrix,
which separates the bound and unbound motion in the phase

space. Along the separatrix, ¢ becomes zero at the nearest
local maximum of the potential. We distinguish four cases,
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FIG. 5. (Color online) The potential V(¢) of a biased pendulum
or, interchangeably, of an accelerator/decelerator, Eq. (47) (red
curve), along with the pure pendulum potential Vp(¢) (blue curve)
and the potential of the bias Vz(¢) (black curve). Also shown are
the minimum (stable) and maximum (unstable) equilibrium points.
One can see that the unstable equilibrium point coincides with the
outermost turning point, ¢,,, in the biased-pendulum potential.
Angles in excess of ¢,,, result in a nonuniform accelerating rotation
of the pendulum about the axle, propelled by the falling bias. On the
other hand, the inner turning point, ¢;,, cannot be exceeded, since
the potential at ¢ < ¢;, is repulsive. The cases of acceleration and
deceleration for @, <0 and a,, >0 are shown in panels (a)—(d), as

labeled. The potential is expressed in terms of its amplitude %, see
Eqgs. (13) and (14).
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FIG. 6. (Color online) Biased pendulum or, interchangeably,
Stark accelerator/decelerator potential V(¢) for a range of values of
the stable equilibrium point or, interchangeably, of the synchronous
phase, ¢,. For ¢p;=+ /2, the stable and unstable equilibrium points
coincide and the potential cannot support any bound states. The

L . . . 2W,
potential is expressed in terms of its amplitude —, see Egs. (13)
and (14).

corresponding to the four different types of potentials shown
in Figs. 5 and 6.

Case 1: @, (<0, 0< ¢, <7 and —7=< ¢=< 7, pertaining to
deceleration.
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Along the separatrix, ¢ becomes zero at ¢,,,=7— ¢,, see
also Fig. 5(a). Using Eq. (51) we obtain for the correspond-

ing B
:8 == Zan,(l[cos d)s - (7T - ¢.¥)Sin ¢y] (52)

Inserting this into Eq. (50) gives the expression for the sepa-
ratrix

b= x[-2a, (cos ¢+cos p,+(p— T+ Py)sin ¢,)]"2,
(53)
which is plotted for various values of ¢, in Fig. 7(a). For the
other cases we can follow exactly the same procedure.
Case 2: a, (<0, -3 < ¢, <0 and —7=< ¢=< 7, pertaining
to acceleration.

Along the separatrix, ¢ becomes zero at ¢,,=—m7—d;
see also Fig. 5(b). Here

ﬂ == 2an,€[cos ¢S + (77 + ¢s)Sin d)v] (54)

and the separatrix is given by

d): =~ [_ Zan,g(cos ¢+ COs d)s + (¢+ T+ (;bs)Sin ¢S)]1/29
(55)

which is plotted for various values of ¢, in Fig. 7(b).
Case 3: @, (>0, -7< ¢;<-7 and -27=< ¢=<0, pertain-
ing to deceleration.

Along the separatrix, ¢ becomes zero at ¢,,,=—m—
see also Fig. 5(c). Here

:8 = 2(1”,5[— Cos ¢s - (77 + ¢‘Y)Sin ¢v] (56)

and so the separatrix is given by

d) == [2an,€(_ cos ¢ — Cos ¢s - (¢ + 7+ (]55)Sil’l ¢s)]1/2
(57)
which is plotted for various values of ¢, in Fig. 7(c).
Case4: a, (>0, 7 < ¢,<mand 0< ¢=<2, pertaining to
acceleration.

Along the separatrix, ¢ becomes zero at ¢,,,= 17— ¢,; see
also Fig. 5(d). Here

18: zan,ﬁ[_ Cos ¢s + (77_ d)‘v)Sin ¢v] (58)

and the separatrix is given by

b= [2a, (= cos ¢p—cos ¢+ (m— p— P)sin ¢,)]"2,
(59)

which is plotted for various values of ¢, in Fig. 7(d).

For all other combinations of a,, and ¢, there is no
phase stability, as also illustrated by Fig. 6. We note that
(@, ¢ <0)— ¢(a, (>0)—m for deceleration (cases 1 and
3) and ¢ (a, <0)— ¢py(a, >0)+ 7 for acceleration (cases
2 and 4).

F. Small-angle dynamics

Equation (43) can be solved analytically for small phase
oscillations, i.e., for A¢p<<1. In that case
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FIG. 7. The separatrices, determined from Egs. (53), (55), (57),
and (59), as functions of the synchronous phase, ¢,. Contours de-
marcate domains in phase space (¢71,(’¢71,€) where stable oscilla-
tions take place. Note that ¢, ¢/(2a,)"? plays the role of a (di-
mensionless) momentum and the angle ¢ of its conjugate
coordinate. Depending on the sign of «, , and on the sign of a;
(acceleration or deceleration), four cases are distinguished and
shown in panels (a)—(d).
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sin ¢ =sin(A¢p + ¢b,) = sin ¢, cos A+ cos ¢, sin A
= sin ¢, + A¢ cos ¢, (60)
and so Eq. (43) becomes

Ad): an,€A¢Cos (;bs’ (61)

which is recognized as the harmonic oscillator equation
for a,,<0 and -w/2<¢;<m/2 or for a,;>0 and
/2 < ¢p,<3m/2. Other combinations of a, ; and ¢; lead to
nonoscillatory, exponentially diverging solutions of Eq. (61),
which preclude phase stability.

The harmonic solution of Eq. (61) is

A= Ay cos(Qr + &) (62)
with
P=-a,c08 =0, ,=0 (63)

the angular frequency of the harmonic phase oscillations,
A, the initial phase difference, and &, the initial temporal
phase. The harmonic slow-oscillation frequency is given by

Q 22w 12
— = 1 , 64
2 TEMN? (64)

cos ¢

where we made use of Egs. (44) and (63). This differs for
n>1 from the result obtained previously [22].

Thus we see that for small relative phase angles, A¢, the
nonsynchronous molecule oscillates harmonically about the
synchronous one with a frequency (). As A¢ increases, the
anharmonic terms in the sine expansion become more impor-
tant and the small-angle approximation becomes invalid.
The onset of the anharmonic terms brings about more
complicated, lower-frequency oscillations. At the separatrix;
the oscillation frequency drops to zero and beyond the sepa-
ratrix the motion becomes unbound with no periodic phase
oscillations.

At this juncture, we will make a general point which we
will use frequently later on. We will refer to the oscillations
of the nonsynchronous phase about the synchronous one as
slow oscillations. This reflects the fact that () is typically
much smaller than w(7). In contradistinction, we will refer to
the oscillations at frequency w(¢) as fast oscillations.

We note that the period 7, , of the (slow) oscillations is
generally given by

Pour dt
The= 2f d_d¢n,e

(65a)
bin ¢n,€

and can be evaluated numerically from the first integral of
the equation of motion (43) and from the transcendental

. . . _ ant — nt
equations for the turning points ¢;,=¢;" and ¢,,= ¢, ..
For harmonic oscillations

(66a)

G. Phase stability

The notion of phase stability pertains to periodic solutions
of the equation of motion (43). Physically, these correspond
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FIG. 8. Phase-space distribution of a molecular beam as it enters
a Stark accelerator/decelerator. The best overlap between a phase
stable area (black fishes) and the molecular beam pulse (swarm of
dots) is obtained when the synchronous molecule matches the mean
position and velocity of the beam molecules. Cf. Fig. 2.

to stable oscillations of the nonsynchronous molecule about
the synchronous one. The solutions of the equation of mo-
tion, given by Egs. (53), (55), (57), and (59), determine a
boundary for the momentum of the nonsynchronous mol-
ecule, ('bn!(, as a function of its phase, ¢, ¢, that pertains to

phase-stable motion. That is to say, together, (¢, ¢, ¢, () de-
limit an area of phase stability in the phase space for mol-
ecules interacting with a given wave (n,{).

Phase stability is a key property of a Stark accelerator or
decelerator, which enables handling other molecules than
just the synchronous one. This is what makes the device a
practical one, since bunches of molecules, with a distribution
of positions and velocities, can then be accelerated or decel-
erated. Without phase stability, only a single molecule could
be handled, namely the synchronous one [23,24].

The explicit evaluation of the phase-stable areas, Egs.
(53), (55), (57), and (59), clarifies several issues:

(a) The choice of the synchronous molecule. The dis-
tribution of positions and velocities of molecules in a bunch
(typically Gaussian, for a pulsed supersonic beam, Ref. [25])
occupies a certain region of phase space. In order for the
accelerator or decelerator to act on most of the molecules in
the bunch, an overlap between the phase space occupied by
the bunch and the separatrices for phase-stable acceleration
or deceleration needs to be sought. As the calculations of the
separatrices attest, the synchronous molecule is always at the
center of the phase-stable area, cf. Fig. 7. Hence a maximum
phase-space overlap is achieved when the position and ve-
locity of the synchronous molecule coincides with the most
probable position and velocity of the molecular-beam pulse,
see Fig. 8. Thus in an acceleration or deceleration experi-
ment, the synchronous molecule is generally defined by the
most probable position and velocity of the molecular-beam
pulse.

(b) The size of the phase-stable areas depends on ¢,
which, in turn, determines the acceleration or deceleration

PHYSICAL REVIEW A 73, 063406 (2006)

rate. At higher deceleration rates, only smaller bunches of
molecules can be handled. The largest bunches of molecules
can be handled at zero deceleration, when a bunch is just
transported (i.e., guided) through the field array.

(c) The dominant wave. Since g, is the largest spatial
Fourier coefficient, cf. Eq. (11), we see that a;; supports the
largest phase-stable area and affords the highest acceleration
or deceleration rate. The corresponding wave, (+, 1, 1), re-
ferred to as the first-harmonic wave, gives the best yield
according to this 1D treatment. Higher overtones are nor-
mally not used in experiments, but the effects of many have
been observed [16]. In Sec. V we will examine in more detail
the relative sizes of the phase-stable areas due to different
overtones.

H. Why does a single wave do nearly the whole job ?

So far we limited our considerations to the single-wave
dynamics, i.e., to the equation of motion and its solutions
that pertain to a single wave (+,n,f) interacting with a
bunch of molecules. Here we will show that it is indeed just
a single wave that gives a ride to molecules, with the infi-
nitely many other waves, Eq. (15), playing no role or a mar-
ginal one (see Sec. V C on interferences).

In order to see why this is the case, we will look at the
effect an arbitrary perturbing wave (+,r,s) has on the phase-
stable motion of molecules due to a (+,n,¢) wave, whose
dynamics we outlined in Sec. IV.

Before delving into that, however, let us consider first the
relationship between the velocities of the nonsynchronous
and synchronous molecules for an arbitrary single wave.
Since the averages of the nonsynchronous phase and its time
derivatives over the oscillation period 7, , are identically
equal to zero

(bne) = Ti{ J b edt =0 (67)
and since, from Eq. (39),
Ai=z-i=v-v,=nkAd, ,=nkd, . (68)
we see that
v-vy= i f (v-vy)dr= i vdt — i v dt
=(v) = (vy) =nk(¢, ) =0, (69)

i.e., the nonsynchronous velocity averaged over a phase os-
cillation is equal to the average synchronous velocity. This in
turn shows that the synchronous velocity (pertaining to a
given wave) acts as a pilot for the nonsynchronous velocity
(pertaining to that same wave) as long as phase stability is
maintained. Therefore, molecules which periodically oscil-
late about a molecule synchronous with an arbitrary wave
will get a ride from that wave! In what follows we will call a
wave that gives a ride to a given bunch of molecules a reso-
nant wave.

Let us now approach the problem from the other side and
look at the effect of a perturbing wave on the motion driven
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by a resonant wave. We will look at the case of zero accel-
eration, i.e., the case when the switching frequency w is con-
stant and the Stark accelerator/decelerator serves as a guide.
This will make our calculations simpler, although the same
arguments would apply to the general case of nonzero accel-
eration. Also, we will make our notation more accurate and,
invoking Egs. (17) and (19), write the molecule’s coordinate
as

4
Puc “V,t. (70)
nk n

nt =

The acceleration of a molecule whose motion is resonant
with the (+,n,€) wave is given by

F

ﬁ = An,(’ sin ¢n,€ = An,€ SiIl(I’lan,g - €wt) , (71)
where we made use of Egs. (19), (35), and (70). For small
oscillations, the unperturbed coordinate of a molecule riding
the (+,n,€) wave is

Zn,(’ =

¢ b

A
Z,.0(1) = Ao cos(Q,, gt + &) + —Vor + — (72)
’ nk ’ n nk

as follows from Egs. (38), (62), and (70); its velocity, ob-
tained by taking the time derivative of Eq. (72), is

¢ A Q)
Unet) = ;VO - % sin(€),, ¢t + &). (73)

The harmonic slow-oscillation frequency (1, , is given by
Eq. (63).

We will consider now the perturbing effect of the
(+,r,s) wave on the motion of a molecule which is riding the
(+,n,€) wave. The (+,r,s) wave perturbs the ride of the
molecule by acting on its coordinate z, ¢ as determined by
the (+,n,€) wave. Thus the acceleration imparted to a mol-
ecule by the perturbing (+,r,s) wave is

s _ Fue()
Zn,é’ - M

-
=A, sin(rkz, (1) — sot) =A, sin|: Y w,’l’}t] ,
n

(74)

where we made use of Eq. (70) and introduced the frequency
 ns—Ar 2

W= W= 7 (75)

which is a fast-oscillation frequency, since it is on the order
of w. Clearly, the time average of the perturbing force F ;}
over the perturbation period 7%, vanishes

1
(Fr) = J Fiidt=0 (76)

T
as follows by substitution of Eq. (74) into Eq. (76) and inte-
gration, under the assumption that the slowly oscillating
phase ¢, ; remains constant over the period 7). Hence the

perturbing force is seen to average out fast, as a result of

PHYSICAL REVIEW A 73, 063406 (2006)

which the perturbing wave has no net effect on the phase-
stable motion of the molecule.

The velocity, v;’jg, and the displacement, z,%, imparted by
the perturbing wave can be obtained by integrating Eq. (74).
Integrating once (under the assumption of ¢, , constant)
yields the instantaneous velocity due to the perturbing wave

1 r
v =—5A,; COS|:_¢,,’€ - w,’;j;t} ) (77)
w’ n

m€

Integrating once more gives the displacement caused by the
perturbing force

Z;’} - s 2Ar,s Sin[ Cd’n,{,’ - w;:’,sf’t:| . (78)
(w,7%) n

Thus the effect of the perturbing wave on the velocity and on
the displacement of the resonant wave is suppressed by ;"
and (w]})?, respectively. We see that the net effect of the
perturbing wave vanishes because the perturbing wave fails
to displace the molecule. This is indeed the reason why, to an
excellent approximation, we are allowed to single out the
resonant wave and handle it separately from the perturbing
one(s). It is also the reason why a perturbing wave has no
influence on phase stability.

The motion of a molecule resonant with the (+,7,€) wave
and perturbed by the (+,r,s) wave can now be easily evalu-
ated (for the case of small oscillations) by simply adding
Egs. (72) and (78) or (73) and (77), respectively. This ana-
Iytic result can be compared with the result of a numerical
integration of the differential equation for a nonsynchronous
molecule interacting with the (+,n,€¢) and (+,r,s) waves.
For example, for the (+,1,1) and (+,3,5) waves, the equation
is

Z=A] 1 Sin(kz - (,()t) + A35 Sin(3kZ - 5wt) (79)

and Fig. 9 shows the result of the corresponding numerical
integration. The initial conditions are chosen such that the
molecule interacts resonantly with the (+,3,5) wave, which
means that the (+,1,1) wave acts as a nonresonant, perturb-
ing wave. Since the (+,1,1) wave dominates the right-
moving waves and since its phase velocity is close to (+,3,5)
wave, the perturbing effect of the (+,1,1) wave is much
larger than the effect of all the other waves in the Fourier
expansion, Eq. (15). And yet, this perturbing effect is seen to
be strongly suppressed because of the fast oscillations with
respect to the (+,3,5) wave. While the perturbation of the
velocity is still noticeable on a short time scale, see Fig. 9(a),
the perturbation of the coordinate amounts to just a ripple,
see Fig. 9(b). We note that the frequency and amplitude of
the fast oscillations are correctly predicted by Egs. (77) and
(78), which reconfirms the validity of the assumptions used
in the analysis of the perturbations.

In the case of acceleration or deceleration, the switching
frequency is not constant, but increases or decreases linearly
with time throughout the acceleration or deceleration pro-
cess. Nevertheless, the treatment of the perturbations for the
case of guiding, as given above in this paragraph, remains in
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FIG. 9. (Color online) Dynamics of a nonsynchronous molecule
riding the (3, 5) wave and perturbed by the (1, 1) wave. The dy-
namics was determined by numerically integrating the differential
equation of the molecule interacting with the two waves, for initial
conditions that make the (3, 5) wave resonant and the (1, 1) wave
perturbing. Both the longitudinal velocity, v(z), panel (a), and the
longitudinal position, z(r) —v,t, relative to the synchronous molecule
moving at a velocity vy, panel (b), exhibit slow oscillations super-
posed by fast oscillations. The slow oscillations arise from the
single-wave interaction of the molecule with the resonant (3, 5)
wave and are described by Egs. (72) and (73). The fast oscillations
are due to the perturbing (1, 1) wave and are described by Eqs. (77)
and (78). While the influence of the nonresonant wave on the ve-
locity is significant, its effect on the position z(z) is strongly sup-
pressed. The time scale is given in terms of the slow-oscillation
period 7, ¢

place for this case as well, since () essentially does not
change during a fast-oscillation period (typically by less than
1%) and so can be treated as a constant.

The above treatment only breaks down in the limit
w(t)=kV(r) —0, where the used assumption w(r)<<{) no
longer holds. In practice, such a situation does not occur,
since even if the molecules are decelerated to velocities con-
ducive to trapping, see Ref. [9], w(?) still considerably ex-
ceeds (), and so the treatment remains in place.

I. Two (or more) waves traveling with the same phase velocity

When the resonant and perturbing waves travel at the
same phase velocity (i.e., for €/n=s/r=«€/kn, with k an
odd integer), the perturbing force, Eq. (74), does not average
out. In this case one cannot speak of resonant and nonreso-
nant waves, because all the waves which travel at this same
velocity are equally resonant and will jointly create phase

PHYSICAL REVIEW A 73, 063406 (2006)
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FIG. 10. (Color online) (a) Relative magnitude of the electric
fields due to the (1, 1) wave and the (3, 3) wave (black dotted
curves), which are traveling at the same velocity. These relative
magnitudes are typical for two waves with successive n and the
same velocity. We see that the net field (red curve) is determined
predominantly by the (1, 1) wave, i.e., the one with the smaller
value of n. The conclusions about phase stability can be reached by
considering solely this wave. (b) Typical relative magnitudes of the
force due to the (1, 1), (3, 3), and (5, 5) waves (black dotted
curves), which are all traveling at the same velocity. Since a small
deviation in the force can accumulate when calculating a switching
sequence comprising many stages, one should rely on the net force
(red curve) rather than on the dominant term, cf. Eq. (80).

stability. Since, obviously, any (+,n,€) wave has such
fellow-traveler waves (+, kn, k€), this is actually the usual
situation. Figure 10(a) shows typical relative sizes of two
waves with successive n, traveling at the same velocity. We
see that the resulting shape of the well is dominated by one
of the two waves, namely the one with the smaller n, cf. Eq.
(11). Hence in order to draw conclusions about phase stabil-
ity (which is determined by the shape and depth of the well),
we can rely solely on the properties of the dominant wave.

However, when calculating switching sequences accu-
rately, the influence of the nondominant wave(s) cannot be
fully dismissed, because of the effect it has on the accelera-
tion a, (typically, a deviation of a few percent with respect to
a single-wave treatment can accumulate over 100
acceleration/deceleration stages). Thus when evaluating the
acceleration on a dominant (+,7,€) wave, one should re-
place Eq. (23) with the sum

063406-12



ANALYTIC WAVE MODEL OF STARK DECELERATION...

Initial velocity [m/s]

-7 0 T

kz=g,,(t=0)/n

FIG. 11. (Color online) Global phase portrait showing the phase
stable areas due to the various waves (case of guiding). The con-
tours pertain to average velocities of OH molecules plotted as a
function of their initial velocity v and initial spatial phase kz; the
link between the average velocity and phase stability is given by
Eq. (69). The contour plot is obtained by numerically integrating
the full equation of motion (81) for 80 waves with a temporal phase
and switching sequence given, respectively, by Egs. (32) and (33)
corresponding to guiding (sin ¢»,=0) at V(=150 m/s. The phase
portrait is in perfect agreement with Monte Carlo trajectory simu-
lations which, in turn, are in perfect agreement with experiment.

ag= 2 AKVL,K( Sin(K¢s)~ (80)
Kk odd

Note that this sum converges very fast, cf. Egs. (14) and
(16). Figure 10(b) shows, for the case of the (+,1,1) domi-
nant wave, the modification of the force due to the presence
of the resonant nondominant waves. We note that in order to
achieve an accurate correspondence between a, and ¢,, sev-
eral terms in Eq. (80) may have to be taken into account.
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FIG. 12. (Color online) Detailed view of the phase stable areas
of Fig. 11 around (a) V, and (b) %VO (the case of guiding). The
contours pertain to average velocities of OH molecules plotted as a
function of their initial velocity v and initial spatial phase kz. Zoom-
ing in at the global phase portrait allows for an accurate comparison
of the full-fledged numerical result with the analytic treatment of
the dynamics. The white curves show the separatrices calculated
from Egs. (86) and (87) for a resonant, single-wave interaction. The
green curves are obtained from Eq. (89) and comprise the perturba-
tions due to all the other, nonresonant waves. The yellow curves
combine the two and are seen to render a perfect agreement with the
full-fledged calculation.

V. FULL-FLEDGED DYNAMICS

In Sec. IV H, we discussed the dynamics due to a single
resonant wave perturbed by a single nonresonant wave.
However, the exact (longitudinal) force that is acting on the
molecules, Eq. (15), is due to infinitely many partial waves,
out of which all but one are nonresonant (notwithstanding
the discussion of Sec. IV I). In order to fully assess the role
of the resonant wave vis a vis the nonresonant waves, we
evaluated the combined effect due to a large number of
waves and compared it with a single-wave effect. The single-
wave dynamics, the full-fledged dynamics and the correction
that needs to be applied to the single-wave dynamics in order
to reproduce the full-fledged dynamics can be best visualized
in a phase-space diagram. Such a diagram, or phase portrait,
exemplified in Fig. 11, shows the average velocities of the
molecules as a function of their initial velocity and initial
spatial phase. The link between the average velocity and
phase stability is given by Eq. (69). Note that in the phase
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space regions corresponding to phase stability all the mol-
ecules have the same average velocity. The velocities that the
contours correspond to can be read off from the velocity
scale on the right.

The cases of guiding and of acceleration or deceleration
due to a single wave will be described separately in Secs.
V A and V B. Single-wave dynamics gives rise to features
which occur at odd-fraction multiples, €/n, of the fundamen-
tal velocity V;. In Sec. V C we will deal with features which
occur at even-fraction multiples of the fundamental velocity
Vo These features arise from the interference of (typically)
two adjacent waves.

A. Guiding

The phase portrait shown in Fig. 11 was obtained from a
numerical integration of the full equation of motion

Z(1) = %Z) (81)

with F(z,t) given by Eq. (15) and the temporal phase of the
waves given by Eq. (32) with sin ¢;=0 corresponding to
guiding. We found that increasing the number of waves in-
cluded in the computation beyond 80 (n<5,€=<25) did not
lead to any changes of the phase portraits in the range of the
initial velocities and positions shown. Moreover, we found
that the phase portrait of Fig. 11 agrees perfectly well with
the one obtained from trajectory simulations which, in turn,
perfectly reproduces experiment [16]. Therefore, for all in-
tents and purposes, the phase portrait of Fig. 11 can be con-
sidered to be exact. The phase portrait captures all the com-
plexity of the dynamics in question and makes it possible to
see at a glance the phase-stable areas due to various waves.
We remind ourselves of the fact that while the spatial Fourier
components of F(z,t) decrease exponentially with increasing
n, the temporal Fourier components decrease only as ¢!
Therefore, phase-stable areas corresponding to waves with
n>3 can hardly be discerned but those with £ =<7 can still
be easily observed in the phase-space area depicted.

Figure 12 shows in panels (a) and (b) detailed views of
the phase-stable areas due to the first harmonic wave (+, 1,
1) and due to the (+, 3, 5) wave (note that a;;<0 and
a3¢>0 for the example of low-field seeking states consid-
ered here). The main features can be understood, for the case
of guiding, from Egs. (53) and (57), respectively. Before we
apply these, we realize that, generally, the phase ¢, ,, Eq.
(19), yields a molecular velocity

/ 4
Puc -V, (82)
nk n

Upne=
and an initial position of the molecule

Zpe= at r=0. (83)
’ nk

Equation (53) and (57), simplified for the case of guiding,
become
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FIG. 13. (Color online) Detailed view of the phase stable areas
around (a) V;, and (b) %VO for the case of deceleration. The contours
pertain to average velocities of OH molecules plotted as a function
of their initial velocity v and initial spatial phase kz. The contours
were obtained by numerically integrating the equation of motion
(81) for 80 waves, with a temporal phase and switching sequence
given, respectively, by Egs. (32) and (33) corresponding to decel-
eration (A, ¢ sin ¢;<<0). Panel (a) shows the full-fledged numerical
calculation for deceleration on the first-harmonic (1, 1) wave with
¢,=20°. Panel (b) shows the full-fledged numerical calculation for
deceleration on the (+,3,5) wave with ¢;=—170°. The white curves
pertain to the separatrices obtained for a resonant, single-wave in-
teraction, as given by Egs. (53) and (57). The green curves are
obtained from Eq. (89) and comprise the perturbations due to all the
other, nonresonant waves. The yellow curves combine the two and
are seen to be in perfect agreement with the full-fledged calculation.

(len,{( == [_ 2C¥n€(COS ¢n,€ + 1)]1/2 Ay <0 (84)
and
q.sn,f’ == [zan{,’(_ Cos ¢n,€ + ])]1/2 Qe > 0. (85)

Their combinations with Eq. (82) give the separatrices

UVye= %
" nk

-2 1+ 172 €
+ [ an€( Ccos ¢n,€)] + _VO (86)
n

and
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[zan€(1 — COS ¢n,€)]1/2
nk

Vo= * + fVO (87)
n

for the cases represented by waves (+, 1, 1) and (+, 3, 5),
respectively. The separatrices obtained from Egs. (86) and
(87) are shown in Fig. 12 by the white curves. The equations
capture all the qualitative features of the respective phase-
stable areas seen in Flgs 11 and 12: (1) the phase-stable
areas occur at velocities VO, (2) the velocity (i.e., vertical)
width of a phase-stable area for a given n is proportional to
€712, because |a,o| = €71, Eq. (44); (3) the velocity width of a
phase-stable area for a given € is proportional to exp(—%fn),
cf. Egs. (11) and (44); (4) when the spatial phase, kz,, ¢, var-
ies between —m and ar, then the initial phase ¢, (r=0)
=nkz, ¢ varies between —nm and n7r; as a result, the phase-
stable area corresponding to an (x,n,€) wave consists of n
“fishes” when the (horizontal) initial kz, (=, (r=0)/n
spans the interval of —m to m; (5) for a,,<0, the nodes
occur at kz, ==, +7T+27,i77+4 ..; for a,,>0, the
nodes occur at kz, (=0, +2777,t4:, ..

A closer inspection of Fig. 12 reveals that the agreement
between the separatrix obtained from either Eq. (86) or Eq.
(87) with the exact phase portrait is not perfect. The agree-
ment can be improved to the point of perfection by correct-
ing for the effect of the nonresonant waves. This we do by
applying the approach developed for a single perturbing
wave in Sec. IV H to all the perturbing waves, starting with
Eq. (15). As a result

Doz = > X oy

r odd s odd

=2 2 —

r odd s odd w(ns—€r)

w(ns —4€r) }
E—

n

r
Xcos{—(ﬁn,( -
n

P2 3 A,

r odd s odd w(ns + 6}")

w(ns+4€r
XCOS{£¢ng+¥{|— > LA[,
n n P evenpew
p
Xcos[—(¢ny€+€wt)], (88)
n

where 0, ¢ is the velocity change of the molecules riding the
resonant (+,n,€) wave due to the effect of all the nonreso-
nant waves (so the summation is over all r,s=1,3,... for
which ns—€r#0). Truncating the summation at r=1 and
p=2, we obtain for =0

1711,5’(Z’t = 0) 2 —Alv COS(kZ)
s odd ( )
+ > —Als cos(kz) — _Az cos(2kz).
s odd (I’lS ) 2w

(89)

This is shown by the green line in Fig. 12 for s<21. The
yellow line shows the velocity v, ¢(z,1=0)+0, ((z,1=0), and
is seen to be in full agreement with the phase-stable area
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obtained from the full-fledged calculation. No correction was
needed for the position z,, ¢, as the effect of the nonresonant
waves is diminished by a factor proportional to w?, see Eq.
(78) and Fig. 9(b), and so does not show on the scale of the
figure.

B. Acceleration or deceleration

The phase portraits obtained for guiding can be easily
generalized to the case of acceleration or deceleration, by
incorporating in the numerical calculations a temporal phase,
Eq. (32), corresponding to an accelerating or decelerating
wave. Figure 13 attests to this being the case: panels (a) and
(b) show the same parts of the phase space as panels (a) and
(b) in Fig. 12, but for ¢,=20° and ¢,=—170°, respectively,
and both for deceleration. The white curves show the sepa-
ratrices

Un,{’(t)
_ [_ 20(”((003 ¢n,€ + COS ¢s + (d)n,{,’ — T+ ¢S)Sin ¢n,€)]1/2
B nk
4
+-V(9) (90)
n
and
Un,(f(t)

[Zan{’(_ COos ¢n,€ — COS ¢s - (d)n,{’ + 7+ d)s)Sin ¢n,()]1/2
nk

{
+=V(1) o1
n

obtained from the general formulas (53) and (57), the
green lines the correction due to the nonresonant waves,
Eq. (89), and the yellow lines the corrected separatrices.
Again, the agreement with the exact phase portraits is
excellent.

C. Interference effects
1. Derivation

A close look at Fig. 11 reveals small regions of phase
stability centered at “strange” velocities, such as %VO or 2V,
These phase-stable areas cannot arise from single-wave in-
teractions, since, S we saw above, single waves travel at
phase velocities VO with € and n odd. Here we will show
that the phase-stable areas occurring at even-fraction mul-
tiples of V|, actually arise from the interference of two waves
with n and € odd.

We reach this conclusion in four steps, outlined below for
the case of guiding. First, we transform the equation of mo-
tion of a molecule at a position z subject to two arbitrary
waves (+,n,€) and (+,7,s)

Z=A, ¢ sin(nkz — fwt) + A, ; sin(rkz — swt) (92)

cf. Eq. (35), to a frame moving with velocity
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{+s

Vg= n+rV0’ (93)

where the two waves act on the molecule with the same
frequency

ns—{Lr

. (94)

W, =
 n+r

Note that w, is a fast oscillation. The molecule’s position in
such a frame is

Zp=2=V,t. (95)
The transformed equation of motion thus becomes
Zy=A, ¢ sin(nkz, + w,t) + A, ; sin(rkz, — w,t),  (96)

where we made use of the equality 7=7,.

Second, we integrate Eq. (96) under the condition that
the spatial phase kz, remain constant with respect to the
temporal phase w,f; this is consistent with our aim to find
stable, slowly oscillating solutions. For the constant spatial
phase we take the value nkz,(¢') the spatial phase acquires at
an arbitrary time, t'. Thus we obtain

A A
Z,(t)=- —nl cos[nkz,(1") + w,t] + L2 cos[rkz,(t") — w,t]
Wy Wy

+Cy, (97)

where C| is an integration constant, which can be evaluated
by integrating both sides of Eq. (97) over a fast oscillation
period, 7,=+". This yields

8

1 ('+7,2

— 2 (Ndr=7,(1") = Z,(1") = C}. (98)

TeJv'—r,2

Now integrating Eq. (97) for nkz,(') constant yields

An . Ar S . ’
2,(0) = = = sin[nkz (1) + w t] - =5 sin[rkz,(1') - w,(7)]
wé’ wg

+Z(1) (1 =1") + Cy, (99)

where we made use of Eq. (98). Here C, is another integra-
tion constant, which can be evaluated by integrating Eq. (99)

over a fast-oscillation period 7,
1 (1'+7,2
— Z,(dt = Z,(t") = C,.
TeJ vz,

(100)

Note that Eqs. (97) and (99) are valid at time r=~¢'. In par-
ticular, for t=¢" Eq. (99) yields
An . ! ! AVS . ! l
(") == _,ze sin[nkzy(t') + wgt' | = —5 sin[rkz,(t") — w,t']
W Wy
+Z,(t").

(101)

Since the time ¢ was chosen arbitrarily, Eq. (101)
holds at all times, which makes t' into a time variable;
we will denote it by ¢ again (¢’ —7). Furthermore, we
will solve Eq. (101) iteratively. The inequalities A, ¢/ w§,<1
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a}rlld Am/w§<1 (cf. Sec. IV H) along with Eq. (101) imply
that

7,(1) = Z,(t) (102)

from which it follows that already the first iteration (i.e.,
74(t) —Z,(t), on the right-hand side) generates an accurate
solution

A A
7,(t) == L; sin[nkZ, (1) + w,t] - - sin[ rkZ, (1) — w,t]
Wy @y

+Z(t)=a+b+7,, (103)

where the quantities @ and b are shorthands for the first and
second term, respectively.

Third, we insert Eq. (103) into the equation of
motion (96) and invoke the following trigonometric
approximations:

sin[nk(a +b)] = nk(a+b) sin[rk(a +b)] = rk(a + b)

cos[nk(a+b)]=1 cos[rk(a+b)]=1. (104)

As a result, we obtain the equation of motion in the form

Z, = nkA, ¢(a+ b)cos(nkZ, + w,t) + rkA, ((a + b)cos(rkz,
— @,t) +A, ¢ Sin(nkZ, + w,t) + A, ; sin(rkz, — w,t)
=[1- wgz[nkAnye cos(nkz, + w,t) + rkA, ; cos(rkz,
= w )]l X [A, ¢ sin(nkZ, + w 1) + A, ; sin(rkZ, — w,1)].
(105)

Taking an average of Eq. (105) over the fast-oscillation pe-
riod 7, yields

t+ Tg/2

— Z(0dt" = Z,() = 7,(1)
TeJ1-7,2

1 . ~
== 2w2An,€Ar,s(n + )k sin[(n + )kZ,].
8

(106)

Equation (106) is a second-order differential equation for z,
which reveals that a molecule that has a coordinate z,~Z,
with respect to a synchronous molecule traveling at a veloc-
ity V, is subject to a sine-shaped restoring force which leads
to slow stabilizing oscillations. This comes about in exactly
the same manner as in the case of a single-wave interaction.
Fourth, we realize that the waves (+,n,€) and (+,7,s) act
jointly as a single wave (+,n+r,€+s). As this wave moves
at the phase velocity vg=%v0, cf. Eq. (93), we can ascribe
it a phase
¢n+r,€+x = (I’Z + r)kZ - (€ + S)(X)t. (107)
Plugging Egs. (93) and (95) into Eq. (107) then gives
¢n+r,€+x = (l’l + r)ng =~ (n + r)kzg’ (108)

which implies
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FIG. 14. Interference dynamics of a nonsynchronous molecule
interacting with the (1, 1) wave and the (1, 3) wave which jointly
create phase stability at 2V|,. The dynamics was obtained by nu-
merically integrating the equation of motion (92) for a molecule
interacting with the two waves, with the initial condition v(0)
=2V,. Both the longitudinal velocity, v(z), panel (a), and the relative
position, Az=z(t)—2V,t, panel (b), exhibit slow oscillations super-
posed by fast oscillations. The two interfering waves (1, 1) and (1,
3) act jointly as a single (2, 4) wave, giving rise to slow oscillations
of period 7, 4. Note the similarity with Fig. 9.

Q.b.n+r,€+s = (l’l + r)kzg (109)

Substitution from Egs. (108) and (109) into Eq. (106) yields
the final result

1
27,2 o3
An,fAr,x(n + r) k” sin ¢n+r,€+s

¢n+r,€+s ==
2w§

= An+r,€+s(” + r)k sin ¢n+r,€+s

(110)

= Qi g+5 SN ¢n+r,€+sv

where we set
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1
ﬁAn,fAr,s(n + I‘)k
g

(111)

An+r.€+s =-

and

Xpr s = An+r,1‘,’+s(n + r)k (l 12)

Equation (110) is of the same form as Eq. (43) for a
single-wave interaction (in the case of guiding, with sing
=0). Therefore, all the results (for guiding) obtained from
Eq. (43) are equally valid for the interference dynamics.

Figure 14 illustrates the interference dynamics of a mol-
ecule interacting with the (I, 1) and (1, 3) waves which
propagate at phase velocities V|, and 3V, respectively. The
dynamics was obtained by numerical integration of Eq. (92),

with the initial condition set such that v(0)=2V,=2V,,.

n+r
Note the similarity between Figs. 9 and 14. The former per-
tains to a nonsynchronous molecule interacting resonantly
with the (3, 5) wave and nonresonantly with the (1, 1) wave.
As a result, the molecule’s velocity slowly oscillates about
%VO, with superposed fast oscillation due to the perturbation
by the (1, 1) perturbing wave. Figure 14 shows a similar
dynamics, but now the slow, stable velocity oscillation is

centered around ﬁVO. Hence the (1, 1) and (1, 3) waves act

individually as p;“lturbing waves, but act jointly as a single
stabilizing (2, 4) wave propagating at 2V,

We note that the frequency and amplitude of the fast os-
cillations are correctly predicted by Egs. (97) and (103).

2. Comparison with the exact phase portraits

Equipped with Eq. (110), we can now return to Fig. 11
and check whether the strange features occurring at even-
fraction multiples of the fundamental velocity can indeed be
explained by our analytic model of the Stark accelerator/
decelerator.

First, we observe that the phase-stable areas are found at
the velocities %VO, gVO, and %VO. Zooming in would reveal
many more phase-stable areas, e.g., at %VO or %Vo. The sta-
bility at all these velocities follows directly from Egs. (93)
and (110). Table I lists pairs of waves that give rise to a given
phase-stable area due to interferences. Thus we see that, for
instance, the stability at %VO results from the interference of
the (1, 1) and (1, 3) waves, and at %VO from the interference
of the (1, 1) and (3, 1) waves. Next, we observe that the
phase-stable area at %VO exhibits two fishes, whereas phase
stability at %Vo exhibits four. Also this is in full agreement

TABLE 1. A list of the properties of typical two-wave interference effects.

Interfering waves (1,1),(1,3) (1,1),(3,1) (1,1),(5,7) (3,7),(1,3)

Ve 4 2 1 8 4 10 5
§V0=2V0 ZV():EVO EV():gVO IV():EVO

n+r 2 4 6 4

w, 0} w/?2 w/3 /2

Apir e 4iPW2 96k W, W 540k3W, W 64W, W5
3w M2w? M2’ 1M w? 1M w?
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with our treatment, and follows immediately from the
(n+r) factor in the argument of the sine in Eq. (110). The
sign of the prefactor a,,, ¢, €xplains correctly whether the
interference effect exhibits a node or an antinode at z=0.
Last but not least, we can evaluate the slow-oscillation fre-
quency in the harmonic limit, cf. Eq. (63), from

172

An,fAr,s =0
2 = St l+s

Q= |an+r,(+x|1/2 = (r+ l’l)k

fi
(113)

where the absolute value accommodates the cases of nega-
tive A, ¢, A,y OT @,

Let us zoom in Fig. 11 on the phase-stable area occurring
at 2V, and use it as a testing ground for the accuracy of our
treatment of the interference effects. A magnification of this
phase-stable area is displayed in Fig. 15(a). The white curve
shows the separatrix obtained from Egs. (86) and (107) for
the resonant (+,n+r,{+s)=(+,2,4) wave. We see that it
correctly renders the size of the separatrix but not quite its
shape. As in the case of single-wave dynamics, in order to
obtain a full agreement between our theory and the exact
result we have to take into account the influence of the per-
turbing waves. This influence can be taken into account in
exactly the same way as before, i.e., by means of Eq. (89).
We have to substitute into it n+r=2 for n and €+s=4 for €,
which gives

Trazt=0)= S —= 4
2 S Cp-Ho

S Y

—A
» odd 2p+4)w !

=2((1 1

+
podd \(P=2)p (p+2)p

1, cos(kz)

2
p cos(kz) — 8_wA2 cos(2kz)

A
)A cos(kz)
w

A A
— 22 cos(2kz) = — == cos(2kz). (114)
4w dw

We see that in this particular case, the sum over p vanishes
and so the correction given by Eq. (114) takes quite a simple
form. The correction is shown by the green curve in Fig.
15(a). The yellow curve is a sum of the white and green
curves, and is seen to agree perfectly with the exact separa-
trix. We thus arrive at the conclusion that our analytic model
accounts perfectly well for the observed phase stability at
even-fraction multiples of the fundamental velocity, in terms
of interferences of waves with n,€ odd.

Above, we treated the dynamics due to two interfering
waves. In particular, we showed that the (+, 1, 1) and the
(+, 1, 3) waves jointly create phase stability at 2V,. But
these are not the only waves that create stability at this ve-
locity! An interference wave, just as a single wave, is always
accompanied by fellow-traveler waves. For example, the (—,
1, 1) and (+, 1, 5) waves also create phase stability at 2V, as
do the (—, 1, 3) and the (+, 1, 7) waves, etc.

Taking into account all combinations of the (+,1,€)
waves that generate phase stability at 2V|,, we obtain for the
total a, 4 coefficient
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FIG. 15. (Color online) Detailed view of the phase stable area
around 2V, for the case of guiding (with ¢,=0°), panel (a), and of
deceleration (with ¢,=20°), panel (b). The contours pertain to av-
erage velocities of OH molecules plotted as a function of their
initial velocity v and initial spatial phase kz. The full-fledged nu-
merical calculations are compared with the analytic result for the
case of the interference of the (1, 1) wave with the (1, 3) wave,
which give jointly rise to a (2, 4) wave. The white curves show the
separatrices (at r=0) obtained from Eq. (53) for n—n+r and €
—{+s, and with ¢,,, ¢, and a,,, ¢4, as given by Eqgs. (107) and
(112). The green curves were obtained from Eq. (114) and comprise
the perturbations due to all nonresonant waves. The yellow curves
combine the two and are seen to be in excellent agreement with the
full-fledged numerical calculation. The temporal phase and switch-
ing sequence used for deceleration, panel (b), is given, respectively,
by Egs. (121) and (122). We note that the A, coefficient is negative
for the case of low-field seekers, considered in this calculation.

_oskK'WE (1 1 W
TIP3 T LS -2+ aMPe?
(115)

where we note that Eq. (115) is in complete agreement with
Eq. 24 of Ref. [16]. The combined effect of the fellow-
traveler waves is small. In total, they give rise to a correction
of about 8% to the value of a, 4 obtained by considering the
(+, 1, 1) and (+, 1, 3) waves only. This results in a correc-
tion of 4% for the corresponding separatrix. Therefore, in
evaluating the phase-stable areas around 2V, we could rely
solely on the interference wave arising from the combination
of the (+, 1, 1) and (+, 1, 3) waves.
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The same discussion can be applied to phase stability at
%VO, which is not due just to the (+, 1, 1) and (+, 3, 1)
waves, but also to the (4, 1, 3) and (—, 3, 1) waves, the
(=, 1, 1) and (+, 3, 3) waves, etc. Taking into account
all combinations of the (x,1,€) and (%,3,€) waves that
generate phase stability at %VO, we obtain for the total ay ,
coefficient

96K W W - ( 1
Ry ) 5\ G+ 1225 +2)
. 1 ) _16k4W1W3<4 1_6)
(i+32)%i+2)) | M*o? 3a)’

(116)

which is in full agreement with Eq. 26 of Ref. [16].
Again, the correction due to the fellow-traveler waves has
no significant effect on the size of the separatrix as evaluated
from the combination of the (+, 1, 1) and (+, 3, 1) waves
alone.

3. Accelerating or decelerating on an interference

Accelerating or decelerating on an interference wave is
somewhat trickier than it is on a single wave. The main
reason is that the A,,, ¢,, coefficient, Eq. (111), which de-
pends on w, becomes itself time dependent through the time
dependence of w=w(r). This needs to be taken into account
when re-deriving expressions for v,(f) and w(z) from the con-
dition of a constant synchronous phase with respect to the
(n+r,€+s) wave.

First we realize that the acceleration imparted to the
synchronous molecule by the interference wave is given
by

(n+r)?

ay(t) = Ay ers(t)sin g =— 2ns — €20 ()

kAn,fAr,s sin ¢s

Ay
(1)’

(117)

where we made use of Egs. (23), (94), and (111) and so is
seen to depend on time. This time dependence does not
affect the derivation of the interference dynamics (Sec. V C)
since w(tf) does not change appreciably during a fast-
oscillation period. Equation (117) can be integrated to
yield the synchronous velocity, which must equal the phase
velocity

t

{+s
v()=——Vo+
n+r

0

(t")ar' —hsv f Ay
1 = + I3
s n+r ° sz(t’)

€+s@
n+r k

= n+r,€+s(t) = (1 18)

The time derivative of Eq. (118) can be recast into a differ-
ential equation for w(z)
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_n+r kA,
T+ se(0)’

() (119)

which can be easily solved by direct integration. With the
initial condition w(0)=w, we obtain

1/3
o(t) = {MI+ w3] .

C+s 0 (120)

From Eq. (120), the temporal phase becomes
€+ [3(n+r)kAd 3}4/3
r+

(0]

&)= fo w(t')d’ = 4(n+r)kA,

(€ + s)wg

- 4(n+rkA,

{+s

(121)

which generates the switching sequence required for accel-
erating or decelerating on an interference wave

0t)=qgm ¢g=0,1,2,... (122)

The switching sequence obtained from Eq. (121) was used in
a full-fledged calculation for the case of deceleration (at ¢,
=20°) to generate the phase portrait shown in Fig. 15(b).
Also shown is the separatrix (white curve) obtained by sub-
stituting «,,,,. ¢,,(t=0) into Eq. (53). We note that the value of
@1y 045(1) at 1=0 is minimal, and so determines the depth of
the potential well that captures the molecules which, in turn,
determines the area of phase stability (note that any increase
of the well depth during deceleration is of no avail). Also
shown are the perturbations by all the other waves (green
curve) and the net separatrix (yellow curve). Again, an ex-
cellent agreement between the latter and the full-fledged cal-
culation is found. Deceleration on an interference is of little
practical interest, since the corresponding deceleration rates
and phase-stable areas are puny.

4. Multiple interferences

Furthermore, it is quite easy to generalize the treatment of
the interference effect to more than two waves. This can be
done by treating the interference wave on the same footing as
a single wave and letting it interfere with another single
wave, in exactly the same way as the two single waves that
gave rise to the interference. This results in tiny, so far un-
observed effects.

VI. CONCLUSIONS

Stark acceleration or deceleration is a phase-stable pro-
cess that enables full control of the translational motion of
quantum-state-selected polar molecules. The acceleration or
deceleration process abounds in rich dynamics, which has
been accurately captured by an analytic model presented in
this paper. The model is based on a Fourier analysis of the
time-varying inhomogeneous electric field produced by a
Stark accelerator/decelerator, which reveals that the field
consists of an infinite multitude of stationary and counter-
propagating waves with well defined phase velocities. The
ensuing physical picture set forth by the “wave model” is
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that molecules injected into the accelerator/decelerator ride
the waves.

In this paper, we tackled explicitly the interaction of the
injected molecules with an arbitrary wave in the Fourier ex-
pansion, and obtained an analytic description of the accelera-
tion or deceleration dynamics which is both intuitive and
exact. We found that the dynamics is dominated by the in-
teraction of the molecules with a single wave. This wave is
distinguished from all the other waves by its phase velocity,
which is such as to come close to the velocity of the mol-
ecules (resonant wave). We studied explicitly the effect of
the nonresonant, perturbing waves on the resonant-wave dy-
namics and showed that it is heavily suppressed, with little
consequence for phase stability. We also showed that two (or
more) waves can interfere with one another and act jointly as
a single wave that gives rise to a phase-stable motion of the
molecules.

We compared the dynamics derived from the wave model
with Monte Carlo trajectory simulations of the acceleration
or deceleration dynamics, which in previous work had been
found to be in perfect agreement with experiment. This com-
parison showed that every tiny detail of the observed rich

PHYSICAL REVIEW A 73, 063406 (2006)

phase-space structures could be accounted for by invoking
either single-wave dynamics, or perturbations by nonreso-
nant waves, or interference dynamics.

The link between various regions of phase stability and
experimental observations was studied earlier [16]. However,
the wave model led us to reinterpret the first- and second-
order resonances, identified in the previous work, in terms of
single-wave and interference dynamics. We were able to ex-
tend the previous study and show that arbitrary overtone
waves can be used for deceleration. This was subsequently
corroborated by experiment [26].

Thus we conclude that the analytic wave model encom-
passes all the longitudinal dynamics that arises in a Stark
accelerator/decelerator.
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