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Unravelling the structure of glycosyl cations via
cold-ion infrared spectroscopy
Eike Mucha1,2, Mateusz Marianski 1,4, Fei-Fei Xu3, Daniel A. Thomas 1, Gerard Meijer 1,

Gert von Helden 1, Peter H. Seeberger2,3 & Kevin Pagel1,2

Glycosyl cations are the key intermediates during the glycosylation reaction that covalently

links building blocks during the synthetic assembly of carbohydrates. The exact structure of

these ions remained elusive due to their transient and short-lived nature. Structural insights

into the intermediate would improve our understanding of the reaction mechanism of gly-

cosidic bond formation. Here, we report an in-depth structural analysis of glycosyl cations

using a combination of cold-ion infrared spectroscopy and first-principles theory. Partici-

pating C2 protective groups form indeed a covalent bond with the anomeric carbon that leads

to C1-bridged acetoxonium-type structures. The resulting bicyclic structure strongly distorts

the ring, which leads to a unique conformation for each individual monosaccharide. This gain

in mechanistic understanding fundamentally impacts glycosynthesis and will allow to tailor

building blocks and reaction conditions in the future.

Corrected: Publisher correction

DOI: 10.1038/s41467-018-06764-3 OPEN

1 Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany. 2 Institute of Chemistry and
Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany. 3 Department of Biomolecular Systems, Max Planck Institute of Colloids and
Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany. 4Present address: Hunter College, The City University of New York, 695 Park Ave, New York, NY
10065, United States. These authors contributed equally: Eike Mucha, Mateusz Marianski. Correspondence and requests for materials should be addressed
to P.H.S. (email: peter.seeberger@mpikg.mpg.de) or to K.P. (email: kevin.pagel@fu-berlin.de)

NATURE COMMUNICATIONS |          (2018) 9:4174 | DOI: 10.1038/s41467-018-06764-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6566-9931
http://orcid.org/0000-0002-6566-9931
http://orcid.org/0000-0002-6566-9931
http://orcid.org/0000-0002-6566-9931
http://orcid.org/0000-0002-6566-9931
http://orcid.org/0000-0001-9415-5991
http://orcid.org/0000-0001-9415-5991
http://orcid.org/0000-0001-9415-5991
http://orcid.org/0000-0001-9415-5991
http://orcid.org/0000-0001-9415-5991
http://orcid.org/0000-0001-9669-8340
http://orcid.org/0000-0001-9669-8340
http://orcid.org/0000-0001-9669-8340
http://orcid.org/0000-0001-9669-8340
http://orcid.org/0000-0001-9669-8340
http://orcid.org/0000-0001-7611-8740
http://orcid.org/0000-0001-7611-8740
http://orcid.org/0000-0001-7611-8740
http://orcid.org/0000-0001-7611-8740
http://orcid.org/0000-0001-7611-8740
https://doi.org/10.1038/s41467-018-07184-z
mailto:peter.seeberger@mpikg.mpg.de
mailto:kevin.pagel@fu-berlin.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


In the 1890s, Emil Fischer introduced the glycosylation reaction
that became crucial in the chemical assembly of carbohy-
drates1. The reaction is believed to proceed under most reac-

tion conditions via a key ionic species, the glycosyl oxocarbenium
ion2,3. However, the transient nature of this short-lived reaction
intermediate impeded its isolation and detailed structural
characterization.

The glycosylation reaction follows, for the most part, a text-
book SN1 mechanism that proceeds via a carbocation inter-
mediate. The cleavage of a leaving group leads to the formation of
a planar carbocation intermediate that can be attacked by a
nucleophile from either side to yield two stereoisomeric products.
Carbohydrate synthesis greatly benefits from full stereochemical
control during glycosidic bond formation. The stereoselective
formation of trans-glycosidic linkages is most reliably achieved
when a C2-participating neighboring group is employed4,5. C2
acyl groups such as 2-O-acetyl or 2-O-benzoyl interact with the
anomeric carbon and promote the formation of 1,2-trans-glyco-
sidic linkages. Structural details concerning the exact type of
interaction, which could range between oxocarbenium-type and
acetoxonium-type ions have remained elusive (Fig. 1). The sta-
bilization of glycosyl cations in the condensed phase was pre-
viously demonstrated using superacids6, but the results cannot be
easily transposed to classical glycosylation conditions. The
interaction of participating groups with the anomeric carbon of a
glycosyl cation is expected to substantially influence the ring
conformation and in turn impact the kinetics and stereochemical
outcome of the reaction7,8. Reaction optimization of glycosylation
is for the most part purely empirical4 and a better understanding
of the key intermediate is important to select the best building
blocks and reaction conditions for glycan synthesis.

Mass spectrometry (MS) is a widely used tool to analyze
complex samples by measuring the mass-to-charge ratio (m/z) of
ions. Separations purely based on m/z, however, renders this
technique inherently blind to the ions’ internal structure. Spec-
troscopic techniques, on the other hand, probe molecular prop-
erties that depend on the spatial arrangement of atoms and,
therefore, provide rich information about the underlying struc-
ture. Cryogenic ion infrared (IR) spectroscopy can resolve
structural details of complex molecules and their aggregates such
that even minute structural variations in isomeric oligosacchar-
ides exhibit unique IR fingerprints, that allow for unambiguous
assignments9,10.

Here, the structures of three glycosyl cations of C2-acetylated
and C3-, C4-, C6-methylated D-glucopyranose, D-mannopyr-
anose, and D-galactopyranose (Supplementary Note 1) are
determined in detail by cold-ion infrared spectroscopy. Helium
nanodroplets are used as an ideal cryogenic matrix and resemble
the environment of low dielectric constant solvents commonly
used during glycosylations. The glycosyl donors to be structurally
examined were specifically designed to decouple cation formation
from other factors such as the influence of other participating or
bulky protecting groups. Highly resolved IR spectra confirm the

covalent character of participating group interactions with the
anomeric carbon and pinpoint the structural details of glycosyl
cations such as ring puckering.

Results
Carbohydrate analysis using cryogenic IR-spectroscopy. The
experimental setup where m/z-selected ions generated by nano-
electrospray ionization (nESI) are accumulated in a hexapole ion
trap and picked up by superfluid helium droplets traversing the
trap was described previously9,11. The trapped ions are therma-
lized to the equilibrium temperature (0.4 K) of the helium
nanodroplet that contains around 105 helium atoms. Down-
stream of the instrument, the cryogenic ions inside the droplets
are investigated with infrared radiation produced by the Fritz
Haber Institute Free-electron Laser (FHI-FEL12). The resonant
absorption of multiple IR photons causes helium evaporation and
the ejection of bare ions that are detected by a time-of-flight
(TOF) mass spectrometer. Finally, a highly resolved and repro-
ducible IR spectrum, plotted as ion count at the TOF detector, is
recorded.

Glycosyl cations are formed by in-source fragmentation of
thioglycoside precursors (Supplementary Fig. 1). The recorded IR
spectra exhibit well-resolved absorption bands between 900 and
1800 cm−1 (Fig. 2). The vibrational modes contributing to this
characteristic fingerprint region can be divided into three regions.
The first two regions are dominated by complex C–O and C–C
stretching modes below 1250 cm−1 and low-intensity bending
modes of C–OMe and C–H between 1250 and 1450 cm−1. Both
regions, however, are expected to yield coupled and anharmonic
vibrations that do not provide enough characteristic bands for an
unambiguous assignment of the cation's structure.

More direct evidence is found in the region above 1450 cm−1,
where C=O stretch vibrations of the acetyl group are expected.
The exact position of the C=O vibration frequency strongly
depends on the interaction with the anomeric center; in
oxocarbenium-type structures, strong absorptions above 1600
cm−1 indicate a free or weakly interacting carbonyl group, while
the C1-bridged acetyl group in acetoxonium ions yields
absorption bands below 1600 cm−1. In the experimental
spectrum, strong absorptions below 1600 cm−1 suggest the
formation of covalently bound acetoxonium-type ions.

Conformational analysis using first-principles methods. To
elucidate the exact molecular structure, an extensive conforma-
tional search using genetic algorithms13,14 and density-functional
theory has been performed. In all cases, minima on the potential-
energy surface readily divide into covalently bound acetoxonium-
type species with a C=O–C1 bond distance below 1.6 Å and
oxocarbenium-type species with C=O–C1 distances above 2.5 Å
(Supplementary Fig. 2 & 3). The relative energetics of these two
forms was further refined at the MP2 level of theory extrapolated
to the complete basis set15,16. The calculations consistently
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Fig. 1 Glycosyl cation structures. Schematic representation of possible glycosyl cation structures of glycosylating agents containing a C2-participating
group. After cleavage of the leaving group, the carbocation can adopt three hypothetical structures, which differ substantially in the interaction of the acetyl
group with the anomeric carbon. The type of interaction affects the exact conformation of the ring pucker, which influences the kinetics of the subsequent
nucleophilic attack and, as a result, the stereochemical outcome
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predict that covalently bound acetoxonium-type ions are con-
siderably more stable (ΔFharm > 6 kcal mol−1) than their
oxocarbenium-type counterpart. A comparison of predicted IR
spectra for the lowest-energy conformers (Fig. 2) with the
experimental data shows a good agreement. The structures
assigned to the glycosyl cations are shown schematically (Fig. 2).
Detailed structures are shown in Supplementary Figs. 4–6.

Spectroscopic analysis of cryogenic glycosyl cations. The
lowest-energy structure of the glucose variant is predicted to give
characteristic symmetric and antisymmetric stretching modes
associated with the covalently bound, C1-bridged acetyl group at
1497 and 1568 cm−1, in good agreement with the experiment
(Fig. 2a). The absorptions below 1500 cm−1 are less indicative of
the ions’ structure, but the general agreement between experiment
and theory supports the structural assignment. The bridged acetyl
group aligns the six-member ring to adopt a 3S1 ring pucker,
where the positive charge at the acetyl carbon is stabilized by the
axial OMe group at C4. In addition, weak absorptions appear
above 1600 cm−1. The lower energy bands around 1615 cm−1 are
associated with a [C1=O5+] stretching mode of a free

oxocarbenium ion, whereas higher energy bands between 1700
and 1800 cm−1 originate from unbound acetyl groups. The pre-
sence of these bands shows that a certain fraction of the ions
adopt open structures.

For the epimeric mannose variant, the two diagnostic bands at
1500 and 1550 cm−1, which again originate from covalently
bound acetyl group, are well-reproduced by theory (Fig. 2b). The
satisfying agreement for the remaining bands below 1500 cm−1

further substantiate the structural assignment. This acetoxonium-
type structure promotes the formation of a BO,3 ring pucker.
Here, the positive charge at the acetyl carbon is further stabilized
by a spatially adjacent OMe group at C6. The sensitivity of the
method towards ring puckering is demonstrated for this system
as another low-energy candidate structure with a 3H4 ring-pucker
yields distinctly different vibrations for the acetyl group, which
clearly discriminates against this ring pucker (Supplementary
Fig. 7). Above 1600 cm−1, only one weak absorption indicates
that a small fraction of open-type structures coexist with the BO,3-
acetoxonium ions.

The galactosyl carbocation yields a more congested IR
fingerprint (Fig. 2c). Additional intense bands between 1200
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Fig. 2 Infrared spectra of glycosyl cations reveal their conformations. Comparison of the experimental (blue) and theoretical (grey) IR fingerprinting region
of a glucose, b mannose, and c galactose variants of glycosyl cations. The experimental spectra were recorded using cold-ion IR spectroscopy in helium
nanodroplets and the theoretical spectra were derived using dispersion-corrected hybrid density-functional PBE0+D3 in 6-311+G(d,p) basis set. The highly
diagnostic spectral region above 1450 cm−1 is characterized by carbonyl vibrations as labeled; the fingerprint region below 1450 cm−1 mostly contains
coupled C–O, C–C, C–OMe, and C–H vibrations. On the right, the assigned ring puckers are schematically shown. The corresponding high-resolution
structures are shown in Supplementary Figs. 4–6
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and 1450 cm−1 appear, while the bands between 1450 and 1600
cm−1 are broadened. Here, the lowest-energy structure adopts a
4E ring pucker where the positive charge cannot be stabilized by
the surrounding substituents. As a consequence, the covalent
C–O–C1 bond is slightly elongated when compared to the
respective bond in the other two cations (Supplementary Table 1).
The predicted IR spectrum explains the identity of most of the
additional bands in the region below 1450 cm−1. Importantly,
two bands at 1490 and 1570 cm−1 associated with vibrations of
the acetyl group align with theoretical results for the 4E ring
pucker. Only two small broader bands at 1510 and 1550 cm−1

cannot be associated with any vibration of the lowest energy
structure. However, their position matches very well with
respective acetyl vibrations of a different low-energy structure
which features an alternative 1S3 ring pucker. Therefore, two
structures with different ring puckers are likely to coexist for the
galactose variant of the glycosylic cation. Again, two absorption
bands above 1600 cm−1 suggest that a certain fraction of open-
type structures coexist with acetoxonium ions. In a conceptually
similar work, Boltje et al. recently reported the direct character-
ization of glycosyl cations using IR multiple-photon dissociation
(IRMPD) spectroscopy17. Although broader absorption bands
were obtained due to the intrinsic thermal activation of the ions
during the measurement, the covalent character of neighboring
groups was confirmed. The enhanced spectral resolution obtained
in this study, however, allows to confidently assign the different
ring puckers predicted by theory.

Discussion
In conclusion, we present a detailed structural characterization of
glycosyl oxocarbenium ions, the key intermediate in glycosylation
reactions. The combination of cold-ion IR spectroscopy and first-
principles calculations provides evidence that cations with C2
participating protective groups adopt acetoxonium-type struc-
tures with a C1-bridged acetyl group. Distinct ring conformations
are observed for each species. Diverse ring puckering influences
the kinetics and stereochemistry of glycosidic bond formation
and has to be taken into account when designing building blocks
for glycan synthesis. Future experiments with building blocks
containing C4 and C6 participating groups will shed light on the
influence of remote participation on the stereochemical outcome
of glycosylations.

Methods
Computational details. The initial screening of the conformational space of 2-O-
acetyl-D-glucopyranose, 2-O-acetyl-D-mannopyranose, and 2-O-acetyl-D-galac-
topyranose cations has been performed with a Fafoom genetic algorithm-based
(GA) search tool13,14 and FHI-aims full electron numerical atomic orbitals code18.
Six rotatable bonds and a ring puckering have been selected as degrees of freedom.
We performed 30 individual GA runs for each investigated carbocation. The set-
tings of each GA run are shown in Supplementary Table 2. The local density-
functional theory optimizations were carried out at dispersion-corrected PBE
+vdWTS19,20 generalized gradient approximation level and in light basis set set-
tings. Number of individual DFT optimizations are shown in Supplementary
Table 3. In the next step, all structures for each carbocation were merged and
clustered using RMSD distance matrix. The tight RMSD= 0.1 Å criterium between
heavy atoms was selected to judge structural similarity. The RMSD calculations
were performed in mdtraj python module21, while hierarchical clustering was done
with scipy module. The number of resulting unique structures for each cation is
shown in Supplementary Table 3. For each structure, we performed single point
energy evaluation at many body dispersion-corrected hybrid PBE0+MBD22,23 level
of theory and tight basis set settings in FHI-aims. Next, the distance between
anomeric carbon C1 and the acetyl oxygen was measured for each structure and the
relative energy as a function of this distance was plotted (Supplementary Fig. 2). In
addition, the Cremer–Pople coordinates24,25 of the ring pucker of each conformer
was measured and a respective ring-pucker assigned.

The structures clearly separate into two distinct regimes—the covalently bound
acetoxonium-type cation (C=O–C1 distance below 2.0 Å) and oxocarbenium-type
cation (C=O–C1 distance above 2.0 Å). We selected multiple lowest energy
structures from both regimes (number of selected conformers shown in

Supplementary Table 3) and performed geometry optimization at PBE0+D3/6-311
+G(d,p) level of theory26 with default convergence criteria in Gaussian 09, Rev
D.0127. After each optimization, we extract the C=O–C1 distance and ring pucker
again and performed a frequency analysis within harmonic approximation. The
presented IR spectra are normalized and scaled by 0.965 factor. The exemplary IR
spectra for other conformers are shown in Supplementary Figs. 7–9.

Finally, the energy of each conformation was calculated at Resolution-of-
Identity15 MP2 level of theory, extrapolated to the complete basis set in ORCA
program28. The extrapolation was done using two-point extrapolation16 with def2-
TZVPP and def2-QZVPP basis sets and auxiliary def2-QZVPP/C basis set for RI.
We observed before that the RI yields virtually identical energies to those from
MP2 calculations for monosaccharides14. Grid5 settings and tight SCF convergence
were also requested. Finally, the conformational energies were augmented with free
energy contributions from harmonic vibrational calculations performed at the DFT
level.

Data availability
All data is available from the authors upon reasonable request.
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