
PAPER IN FOREFRONT

Non-covalent double bond sensors for gas-phase infrared
spectroscopy of unsaturated fatty acids

Carla Kirschbaum1,2
& Kim Greis1,2 & Maike Lettow1,2

& Sandy Gewinner2 & Wieland Schöllkopf2 & Gerard Meijer2 &

Gert von Helden2
& Kevin Pagel1,2

Received: 1 March 2021 /Accepted: 9 April 2021
# The Author(s) 2021

Abstract
The position and configuration of carbon-carbon double bonds in unsaturated fatty acids is crucial for their biological functions
and influences health and disease. However, double bond isomers are not routinely distinguished by classical mass spectrometry
workflows. Instead, they require sophisticated analytical approaches usually based on chemical derivatization and/or instrument
modification. In this work, a novel strategy to investigate fatty acid double bond isomers (18:1) without prior chemical treatment
or modification of the ion source was implemented by non-covalent adduct formation in the gas phase. Fatty acid adducts with
sodium, pyridinium, trimethylammonium, dimethylammonium, and ammonium cations were characterized by a combination of
cryogenic gas-phase infrared spectroscopy, ion mobility-mass spectrometry, and computational modeling. The results reveal
subtle differences between double bond isomers and confirm three-dimensional geometries constrained by non-covalent ion-
molecule interactions. Overall, this study on fatty acid adducts in the gas phase explores new avenues for the distinction of lipid
double bond isomers and paves the way for further investigations of coordinating cations to increase resolution.
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Introduction

Lipids are essential biomolecules for all forms of life ranging
from simple procaryotes to large multicellular organisms. Their
molecular structures are as diverse as their dedicated functions,
involving energy storage, signaling, assembly of biological
membranes, and membrane trafficking [1–3]. Among the most
basic lipids are fatty acids (FAs), which serve as building blocks
for more complex lipid classes such as glycerolipids,
glycerophospholipids, and sphingolipids [4]. Despite their rela-
tively simple framework, FAs exhibit structural microheteroge-
neity that can have important effects on biophysical membrane
properties and biological functionality [5, 6]. In particular, the
number, position, and configuration (trans/E or cis/Z) of carbon-
carbon double bonds (C=C) in unsaturated FAs can vary

substantially between different tissues [7–9], and altered distri-
butions of C=C isomers are potential biomarkers for disease
diagnosis [10, 11]. For instance, it was recently demonstrated
that cancer cells can employ an alternative FA desaturation path-
way yielding a measurable increase in FAs with unusual C=C
positions [12] and that cancer subtypes can further be differen-
tiated on the basis of C=C location in FAs [13]. The dietary
uptake of various unsaturated FAs such as cis-/trans-FAs or
omega-3/omega-6 FAs can have beneficial or deleterious effects
on human health [14–16]. Individual and even opposed effects
of distinct C=C isomers were impressively demonstrated on the
example of atherosclerosis, which is either positively or nega-
tively influenced by two different C=C isomers of conjugated
linoleic acid and which yielded contradictory findings when
regarded as a single molecular species [17]. Other diseases that
are promoted or inhibited by specific C=C isomers are cancer
[18], type 2 diabetes [19], and cardiovascular disease [14, 15].
Determining C=C locations is also important in elucidatingmet-
abolic pathways. For instance, the C=C isomers oleic acid (18:1,
9Z) and cis-vaccenic acid (18:1, 11Z) are synthesized via sub-
stantially different routes, i.e., desaturation of stearic acid (18:0)
or elongation of palmitoleic acid (16:1, 9Z) [20]. Taking togeth-
er the pieces of evidence collected during the past decades, it has
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become evident that modern lipidomics must ensure structural
profiling down to the level of C=C isomers to elucidate synthetic
pathways and monitor altered lipid metabolism in health and
disease [5].

The uncontested main tool used in lipid analysis is mass
spectrometry (MS) in combination with soft ionization tech-
niques such as electrospray ionization (ESI) and matrix-
assisted laser desorption/ionization (MALDI) [21, 22].
Conventional MS workflows employing collision-induced
dissociation (CID) allow for lipid analysis on the first two
levels of structural complexity: identification of the lipid class
and the overall FA composition, e.g., 18 carbons and one
unsaturation (18:1) [7]. However, CID does not induce
intrachain fragmentation indicative of C=C location.
Therefore, the development of MS-compatible approaches
that enable the determination of C=C locations has boomed
in recent years and has given rise to a variety of techniques,
including ozone-induced dissociation (OzID) [7, 23, 24],
Paternò-Büchi reactions [8, 9, 25], epoxidation [26–28] and
other oxidation reactions [29], charge inversion [30, 31],
radical-directed dissociation [32, 33], and ultraviolet photodis-
sociation [34, 35]. Most of those strategies require on- or
offline chemical derivatization of the lipid and do not yield
direct information about the C=C configuration.

Cryogenic gas-phase infrared (IR) spectroscopy was recent-
ly established as a powerful technique to resolve minute struc-
tural differences in sphingolipid and glycolipid isomers [36,
37]. Motivated by one of these previous studies, which showed
that both C=C location and configuration in protonated
deoxysphingolipids are distinguishable without chemical mod-
ification by gas-phase IR spectroscopy [36], we extended the
application to FAs in this work. The distinction of sphingolipid
isomers in the gas phase relies on a charge-olefin interaction
between the protonated primary amine and the C=C bond [38],
which induces characteristic N-H vibrations. Sphingolipids thus
carry an intrinsic double bond sensor, which is their primary
amino group. FAs lack a comparable, electrophilic functional
group that could possibly interact with the C=C bond. The aim
of this study is therefore to generate similar charge-olefin inter-
actions in FAs by adduct formation with appropriate cations.
Non-covalent complexes with sodium, pyridinium,
trimethylammonium, dimethylammonium, and ammonium
cations were investigated using a combined approach of cryo-
genic gas-phase IR spectroscopy, ion mobility-mass spectrom-
etry (IM-MS), and quantum chemical calculations.

Materials and methods

Reagents and solvents

Oleic acid (9Z), elaidic acid (9E), cis-vaccenic acid (11Z) and
trans-vaccenic acid (11E), trimethylammonium chloride,

dimethylammonium chloride, ammonium acetate, pyridinium
chloride, water, methanol, and acetonitrile were purchased from
Sigma-Aldrich (Taufkirchen, Germany). Aqueous stock solu-
tions (100 mM) of each salt were prepared. FAs were dissolved
in methanol or acetonitrile (1 mM). Sodium and ammonium ad-
ducts were generated from 100 μM fatty acid solution in metha-
nol containing 10mM ammonium acetate. Trimethylammonium,
dimethylammonium, and pyridinium adducts were generated
from 500 μM solutions of FAs in acetonitrile containing 1 mM

of the respective chloride salt.

Cryogenic gas-phase IR spectroscopy in helium
nanodroplets

IR spectra were measured using a home-built instrument de-
scribed previously [39–41]. Charged lipid adducts are generat-
ed in positive ion mode by nano-ESI from 5 to 10 μL sample
solutions using home-made emitters coated with Pd/Pt (needle
voltage: 0.6–0.9 kV). After mass-to-charge (m/z) selection in a
quadrupole, the ions are guided into a hexapole ion trap and
thermalized by buffer gas cooling (90 K). A pulsed beam of
superfluid helium droplets (10 Hz), generated by the expansion
of pressurized helium through a cryo-cooled Even-Lavie valve
(21 K), traverses the trap and picks up ions. The ions are rapidly
cooled to the internal droplet temperature of 0.4 K by evapora-
tion of helium atoms. The doped helium droplets travel towards
the interaction region, where the droplet beam overlaps tempo-
rally and spatially with the pulsed beam (10 Hz) of the Fritz
Haber Institute free-electron laser (FHI FEL) [42]. When the
laser wavelength is resonant with a molecular vibration, the
ions are released from the droplet and detected by MS. IR
spectra are generated by scanning the wavenumber range of
interest in steps of 2 cm−1 while monitoring the ion count on
the time-of-flight detector. Each spectrum is averaged over two
separate scans to ensure reproducibility.

IM-MS: Determination of CCS

Collision cross sections (CCS) were measured on a home-
built drift tube ion mobility-mass spectrometer described pre-
viously [43]. Non-covalent, charged lipid adducts are gener-
ated in positive ion mode by nano-ESI. The ions are accumu-
lated in an electrodynamic entrance funnel and injected into
the drift region at 10 Hz. The drift tube is 161.2 cm long and
filled with helium at a pressure of 4.1–4.2 mbar. The adducts
traverse the drift tube under the influence of a weak electric
field, where they collide with helium atoms. Small and com-
pact ions collide less often than larger, more extended ions and
therefore spend less time in the drift region. The ions are
transferred into high vacuum via a second ion funnel and
two consecutive ion guides. After m/z selection in a quadru-
pole, the ions are detected using an electronmultiplier detector
(ETP Ion Detect, Australia) to record the arrival time
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distribution (ATD). CCSs were determined bymeasuring drift
times of m/z selected ions at 11 different drift voltages from
2110 to 1110 V in steps of 100 V, while monitoring temper-
ature and pressure in the drift tube. The resulting mobilities
were converted into CCSs according to the Mason-Schamp
equation [44] using a software developed in our group (https://
github.com/jeriedel/CCS).

Computational modeling and frequency calculation

Structures and IR spectra of non-covalent FA adducts were
computed by sampling the conformational space and DFT
optimization of selected structures followed by harmonic fre-
quency calculations. The conformational space was sampled
using CREST [45] with the semi-empirical method GFN2-
xTB [46] and default settings. Twenty to 25 conformers below
a threshold of 15 kJ mol−1 (relative to the lowest-energy con-
former) were selected using principal component analysis
(PCA) of all bond lengths excluding hydrogen atoms
using the module sklearn.decomposition.PCA and clus-
tered by k-means clustering [47]. The lowest-energy
conformer of each cluster was submitted to DFT opti-
mization at B3LYP+D3/6-311+G(d,p) [48, 49] level of
theory followed by a harmonic frequency calculation inGaussian
16 [50]. Because the harmonic approximation systematically
overestimates vibrational frequencies, the computed IR spectra
were scaled by single-parameter frequency scaling to enhance
the agreement between experiment and theory. The harmonic
frequencies were corrected by a scaling factor of 0.965, which
has proven accuracy in numerous previous studies on various
molecular classes including nucleotides [40], sugars [41, 51,
52], and lipids [36, 37] with comparable methods as used in this
work. The harmonic free energies ΔF were calculated at 90 K,
according to the temperature in the ion trap. CCSs were calcu-
lated for each DFT-optimized conformer at 298.15 K (25 °C) in
helium using the software HPCCS [53], which is based on the
trajectory method [54]. For the CCS calculation, DFT-computed
Merz-Singh-Kollman charges [55] were used. The average
CCSs of all computed conformers below a threshold of ΔF =
10 kJ mol−1 were calculated for comparison with the experimen-
tal CCSs and converted into boxplot diagrams using OriginPro
2020. XYZ coordinates, energetics, and CCSs of all computed
conformers are available in the Supplementary Information
(ESM).

Results

Non-covalent adduct formation of 18:1 fatty acids
with cations

For the investigation of non-covalent FA adducts, a consistent
set of four mono-unsaturated 18-carbon FAs (18:1) was

selected: oleic acid (9Z), elaidic acid (9E), cis-vaccenic acid
(11Z), and trans-vaccenic acid (11E) (Fig. 1). The most abun-
dant C=C isomer of 18:1 FAs in mammalian cells is 9Z,
followed by 11Z [10, 11]. The corresponding trans-isomers
9E and 11E are not naturally synthesized by mammalian en-
zymes but taken up from various food sources: elaidic acid
belongs to the main trans-FAs formed during partial hydro-
genation of oil in industrial food processing and is therefore
elevated in margarine, fried, and bakery products [16]. Trans-
vaccenic acid is naturally produced by bacterial fermentation
in ruminants and therefore taken up with dairy products and
meat [16]. Contrary to cis-FAs, where the C=C bond typically
induces a bend in the lipid chain, trans-FAs tend to exhibit a
linear hydrocarbon chain, similar to saturated FAs.
Differences in the gas-phase geometries of C=C isomers are
therefore expected between cis- and trans-FAs but also be-
tween the 9 and 11 C=C positions due to different lengths of
the dangling lipid chains before and behind the C=C bond.

Five cations were selected for adduct formation: sodium,
pyridinium, trimethylammonium, dimethylammonium, and
ammonium. The cations differ by the number of electrophilic
hydrogen atoms (0–4), size, and shape (Fig. 1). Depending on
the number of electrophilic hydrogens, the cation can either
only interact with the carboxyl group (1 H) or with both car-
boxyl group and C=C bond of the FA. The cation’s size and
shape should further influence the overall size and geometry
of the corresponding non-covalent complex. In general, the
efficiency of adduct formation during the nano-ESI process
decreases with increasing size of the coordinating cation, even
though the proton affinity increases with the number ofmethyl
groups from ammonium to trimethylammonium, which
should facilitate ionization [56]. The observation of
pyridinium, tri-, and dimethylammonium adducts requires
dissolution of the fatty acid in pure acetonitrile. In contrast,
protic solvents such as methanol promote the formation of
ammonium and alkali metal adducts.

The non-covalent FA complexes were characterized using
gas-phase IR spectroscopy in helium nanodroplets, combined
with IM-MS and quantum chemical calculations. Gas-phase
IR spectroscopy is directly sensitive to the structure and can
reveal conformational changes and non-covalent interactions.
The spectra are highly resolved due to cryogenic temperatures
inside the helium droplets and the absence of interacting sol-
vent molecules in the gas phase. IM-MS on the other hand
probes the overall size and shape of the complex, which is
exp r e s s ed by t h e r o t a t i o na l l y ave r ag ed CCS .
Conformationally flexible, extended FA chains that only in-
teract via the carboxylic acid moiety with a cation are expect-
ed to yield larger CCSs than compact adducts with a rigid
geometry, in which the FA chain is wrapped around the cat-
ion. Computational modeling is an important complement to
confirm the three-dimensional gas-phase structures in accor-
dance with the experimental results. It has to be noted,
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however, that the distribution of conformers in the ion trap of
the IR experiment (90 K) is not necessarily the same as in the
drift tube of the IM-MS experiment (298 K).

Sodium adducts [FA + Na]+

Alkali metal adducts are usually the most abundant species
generated during nano-ESI of FAs in positive ion mode.
Accordingly, sodium adducts of 18:1 FAs are readily formed
without the addition of sodium salts from methanolic solu-
tions and observed at m/z 305 in positive ion mode by MS.
IM-MS measurements yield almost identical CCSs of the
[FA +Na]+ ions with a difference of only 1.5% between ste-
reoisomers (ESM Table S1). As expected, the E configuration
yields more extended lipid chains and therefore slightly in-
creased CCSs compared to Z isomers. According to its small
size, the impact of the sodium cation on the global size and
shape of the adduct seems to be limited, and the observation of
comparable CCSs is an indication of very similar three-
dimensional geometries of the isomeric adducts. The geome-
try of the [11Z +Na]+ adduct was investigated as a represen-
tative example of sodiated FAs by conformational sampling
and DFT optimization. All computed low-energy conformers
display a common structural motif: the Na+ cation coordinates
both the carbonyl oxygen of the carboxyl group and the C=C
bond. However, the expected and desired coordination to the
C=C bond does not lead to characteristic vibrations (Fig. 2).
The predominant vibration is the intense carbonyl stretching
(ν) vibration at the same frequency for all C=C isomers, in
agreement with the identical CCSs. Other absorption bands

derived from C-H bending (δ) vibrations of the hydrocarbon
chain, O-H bending and C-O stretching vibrations, are com-
parably weak. The C=C stretching vibration itself is predicted
between 1600 and 1650 cm−1 but not visible in the experi-
mental spectra. In summary, the formation of sodium adducts
does not lead to distinct geometries or distinguishable vibra-
tional modes of C=C regio- and stereoisomers in FAs.
Therefore, inspired by the previous study on sphingolipids
[36], several amines were tested for adduct formation in an-
ticipation of a more important influence on the lipid geometry
and gain of spectroscopic information from intrinsic N-H
bending vibrations.

Pyridinium [FA + pyr]+ and trimethylammonium
adducts [FA + NMe3H]

+

Despite their significantly different shapes, pyridinium and
trimethylammonium share two common characteristics: both
contain a protonated tertiary amine and exhibit a similar mass.
As a consequence, [FA + pyr]+ and [FA +NMe3H]

+ adducts
are observed upon nano-ESI of acetonitrile solutions at m/z
362 and 342, respectively. The single proton on the tertiary
amines can interact with the carboxyl group or the C=C bond
of the FA but not with both simultaneously. Sampling of the
conformational space confirmed unambiguously that both
pyridinium and trimethylammonium interact exclusively with
the carbonyl oxygen and not with the less nucleophilic C=C
bond (ESM Tables S3–S7). However, both theory and experi-
mental IR spectra confirm that a small fraction of conformers
displays an indirect hydrogen-C=C interaction: while the cation
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is coordinated to the carbonyl oxygen, the carboxyl proton
interacts with the C=C bond (distance 2.1–2.5 Å). This interac-
tion induces a significant redshift of the carbonyl stretching
frequency of 20–30 cm−1 and can therefore be readily observed
as an additional shoulder next to the dominant C=O band in the
experimental spectra (Fig. 3). The pyridinium adducts of the 9Z
and 11Z regioisomers display only a very weak side band be-
sides the main carbonyl vibration. The main vibration frequen-
cy is slightly shifted between the isomers, but otherwise the
spec t ra a re not d i s t inguishab le . In the case of
trimethylammonium adducts, however, a difference between
conformer distributions can be observed. While the 9Z and 9E
isomer only show a carbonyl stretching vibration at the expect-
ed frequency, the spectrum of the 11Z isomer also displays a
pronounced, redshifted side band attributed to the OH–C=C
interaction as observed for pyridinium adducts. Compared with
the spectra of sodiated FAs, the relative intensity of lipid chain
vibrations is increased for both cations, but the N-H bending
frequencies and vibrations in the lower wavenumber region are
not diagnostic for C=C isomers. Also, the region below
1200 cm−1 is not well modeled by the employed level of theory.
CCSs are iden t ica l fo r i somer ic pyr id in ium or
trimethylammonium adducts within the accuracy of the mea-
surement (ESM Table S1). The arrival time distributions
(ATDs) of the adducts are broad compared to the ATDs of
sodium adducts, which agrees with the assumption that the
dangling lipid chain has a large conformational freedom if there
is only one point of interaction with the cation.

In conclusion, the investigation of pyridinium and
trimethylammonium adducts yielded interesting results that
contradict the previous assumption that both cations only in-
teract with the carbonyl oxygen and therefore cannot influence
the overall conformation significantly. Instead, an interaction
of the carboxyl OH with the C=C bond is observed, which
gives rise to a characteristic shift of the C=O vibration. In
addition, the broad ATDs show that a multitude of conformers
are present at room temperature.

Dimethylammonium adducts [FA + NMe2H2]
+

Advancing from trimethyl- to dimethylammonium increases
the number of electrophilic hydrogen atoms that can possibly
interact with the lipid chain by one. In principle, the cation
should be able to interact with two nucleophilic groups at the
same time. This assumption was confirmed by theoretical
modeling, which yielded a simultaneous interaction of the
cation with the C=C bond and carbonyl oxygen as the main
and energetically most favorable structural motif. In some
computed conformers of 9E and 11E , however ,
dimethylammonium only interacts with the carbonyl oxygen
(ESM Tables S9–S10), which does not induce a significant
change of the C=O stretching frequency. To confirm the the-
oretical predictions, IR spectra of [FA +NMe2H2]

+ adducts
(m/z 328) were measured for all four C=C isomers (Fig. 4).
The wealth of spectral features clearly increases compared to
the previous spectra. In particular, intense C-H and N-H
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Fig. 2 IR spectra of sodium
adducts of 18:1 FA C=C isomers.
Experimental spectra are stacked
above the wavenumber scale and
a computed spectrum of the 11Z
isomer is shown as inverted gray
trace at the bottom. The frequency
of the intense carbonyl stretching
vibration is not influenced by the
C=C position and configuration.
The region between 1100 and
1300 cm−1 displays weak, non-
diagnostic bands derived from
coupled vibrations of the lipid
chain. Selected vibrational modes
are annotated in the computed IR
spectrum of sodiated FA 18:1
(11Z). Non-covalent interactions
are depicted by dashed lines and
the C=C bond is highlighted in
yellow
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bending vibrations are present between 1400 and 1500 cm−1

and the fingerprint region below 1200 cm−1 exhibits distinct
absorption patterns. The spectral region, which is most appar-
ently affected by the C=C location and configuration, is the
region of carbonyl stretching vibrations. The shape of the
carbonyl band is different for the C=C positions 9 and 11. In
addition, the E isomers display, contrary to the Z isomers, a
visibly blueshifted side band adjacent to the main carbonyl
band. Computational sampling of low-energy conformers
does not lead to structures with such blueshifts. Instead, these
structures are probably derived from higher-energy con-
formers due to incomplete lipid folding into a global minimum
of the potential energy surface (PES). The difference between
E and Z fits with the observation that some E isomers sampled
by CREST are not completely folded into the bridged motif. It
could be that Z isomers are more easily pre-folded due to the
bend in the lipid chain, which facilitates wedging in the cation
between the carbonyl oxygen and C=C bond. Differences be-
tween E and Z isomers were also confirmed by IM-MS. The
CCSs of E isomers are 2–4% larger than those of Z isomers
(ESM Table S1). In addition, the regioisomers 9Z and 11Z
show a CCS difference of 3 Å2, which is in perfect agreement
with theoretical predictions (ESM Fig. S7).

Overall, dimethylammonium adducts of C=C isomers are
much easier to distinguish by IR spectroscopy and IM-MS
than trimethylammonium adducts. Regioisomers can be dis-
criminated by the different shapes of the carbonyl band,
whereas stereoisomers differ by the intensity of a blueshifted
side band and exhibit a significant CCS difference. However,
the spectra and CCSs are too similar to allow an unambiguous
identification of C=C isomers in isomeric mixtures.

Ammonium adducts [FA + NH4]
+

Ammonium adducts of 18:1 FAs (m/z 300) are readily formed
from methanolic solutions containing MS-compatible ammo-
nium acetate. The small ammonium cation is considerably less
bulky than tri- and dimethylammonium, which leads to a sig-
nificant decrease of CCS. Sampling of the conformational
space yielded bridged motifs for all isomers, in which ammo-
nium interacts with both the carbonyl oxygen and the C=C
bond via two of the four available electrophilic hydrogens
(ESM Tables S12–S15). Similar to [FA +Na]+ adducts, the
CCSs of [FA + NH4]

+ adducts are identical between
regioisomers but slightly different between stereoisomers:
the CCSs of E isomers are roughly 2% larger than the CCSs
of the more compact Z isomers (ESM Table S1). Overall, the
CCSs are very similar between C=C isomers because of the
identical structural motif and small size of the cation.

In contrast to the spectra of sodium adducts, the IR spectra
of ammonium adducts show a multitude of vibrational modes
(Fig. 5). The carbonyl stretching vibration is no longer the
only strong band but many other spectral features, such as

C-H and N-H bending vibrations are visible. The most diag-
nostic vibrations are located between 1100 and 1200 cm−1.
The absorption band patterns in that region are diagnostic
for the assignment of single isomers but the band positions
are not distinct enough to deconvolute IR spectra of isomeric
mixtures. The carbonyl bands are very broad, indicating that a
multitude of conformers contributes to the spectra. This is in
agreement with the conformational flexibility and absence of
bulky methyl groups. The mean C=O stretching frequency is
slightly shifted between position 9 and 11.

As already observed for dimethylammonium adducts, the
isomers exhibit a blueshifted band adjacent to the main car-
bonyl band with varying intensity. Its origin was exemplar-
ily explored for the [11E +NH4]

+ adduct because the band is
most intense in the corresponding experimental spectrum.
As all conformers generated by CREST exhibit the same
interaction motif and their C=O stretching frequencies coin-
cide with the main experimental absorption band, other con-
formers were generated on an empirical basis to test the
influence of different interaction motifs on the carbonyl
band (ESM Fig. S10). If the ammonium cation interacts only
with the carbonyl oxygen, the carbonyl band is redshifted,
and even more so if the OH group simultaneously interacts
with the C=C bond, as observed for trimethylammonium-
and pyridinium adducts. Severely blueshifted carbonyl
bands above 1800 cm−1 are obtained if the ammonium cat-
ion donates electron density into the C=O bond by
interacting with the OH group. The experimentally ob-
served, less drastic blueshift coincides with a conformer in
which the ammonium cation interacts with the C=C bond
but not with the carboxyl group. However, all empirically
generated conformers are significantly higher in energy than
the dominant bridged structural motif. Accordingly, no con-
former with a blueshifted carbonyl stretching vibration was
found for any kind of FA adduct during the automated con-
former sampling. One explanation for the experimental ob-
servation of energetically unfavored conformers can be ki-
netic trapping of conformers in which the lipid chains are
not yet ideally folded. Kinetically trapped conformers cannot
reach the global minimum of the PES due to insufficient
internal energy to overcome energetic barriers after cooling
in the ion trap. This effect is most obvious in the 11E iso-
mer: in the spectra of dimethylammonium, ammonium, and
even sodium adducts of trans-vaccenic acid, blueshifted side
bands are clearly visible. One possible explanation is that
the lipid chains in the E isomer are not pre-folded as the
hydrocarbon chains of the Z isomers, which are already
naturally bent. In addition, the distance between the carbonyl
oxygen and C=C bond, which must approach each other to
form bridged structures, is larger than in oleic and elaidic
acid. The relative intensity of the blueshifted band thus de-
pends on both C=C location and configuration and conse-
quently facilitates distinction of C=C isomers.
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Discussion

In the present study, we assessed the impact of on non-
covalent adducts on the gas-phase structures of isomeric
mono-unsaturated FAs. Our results demonstrate that coordi-
nating cations induce specific three-dimensional conforma-
tions of the lipid chain. Those can result in distinct vibrational
modes observable by IR spectroscopy, and different overall
shapes translating into different CCSs. The geometry of the
non-covalent complex depends on the nature of the cation,
particularly on the number of available H-atoms that interact
with the carboxyl group and the C=C bond via intermolecular
charge-olefin interactions. Interestingly, the N-H bending vi-
brations of interacting amines are not diagnostic for C=C iso-
mers, contrary to previous observations reported for
sphingolipids [36]. However, C=C isomers can induce diag-
nostic variations in the carbonyl stretching vibrations. These
include redshifts in [FA + NMe3H]

+ adducts due to distinct
structural motifs in low-energy conformers, different shapes
and blueshifts of the carbonyl bands in [FA +NMe2H2]

+ com-
plexes, and frequency shifts in [FA +NH4]

+ adducts depend-
ing on the C=C location. Overall, the spectral wealth and thus
the information content increases from sodium adducts, where
no characteristic absorptions are obtained, up to ammonium
adducts that yield spectroscopic fingerprints with distinguish-
able band patterns for each C=C regio- and stereoisomer.

However, none of the band positions is diagnostic enough to
discriminate isomeric mixtures from biological sources and
therefore further studies are needed to assess other types of
coordinating cations that allow amore straightforward distinc-
tion of isomers.
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