Please read the papers of your group!
Critical analysis is fine but ignoring the progress is wasteful



The incomplete lecture

Catalysis is a multi-scale phenomenon.
Refers to scales and times.
We discuss some physico-chemical foundations.

We discuss material dynamics at a molecular
level and place this in other temporal
phenomena.

We almost omit all meso-scopic and macroscopic
phenomena related to chemical engineering and
material synthesis.



Catalysis is still phenomenology or
,pblack magic”: the complexity issue

The mechanisms and active sites of some homogeneously
catalysed reactions are known.

In heterogeneous catalysis, the concept how the catalyst
modifies the course of a chemical reaction is well established:
adsorption and spatio-temporal separation.

Proof-of-principle systems in heterogeneous catalysis have
been studied to a great extent (ammonia synthesis, oxidation
of CO).

Many chemically only slightly more complex reactions are still
far away from a fundamental understanding

» validated sequence of elementary reaction steps
= identification of the rate determining step: selectivity
* nature of active site.



The dirty dozen

Catalysis is the change of a reaction rate.

It is kinetics and not thermodynamics: the energy profile of a reaction can
change, but not the the beginning and the end of it.

Catalysis requires a functional material called , catalyst”.

It functions without apparent consumption: it converts more moles of
reactants than its own molarity.

Conventional wisdom assumes reaction cycles as mechanism in which the
active part of the catalyst is regenerated.

We cannot determine a mechanism but only exclude options of a mode of
operation.

A mechanism is “Gedankenexperiment” with multiple unknowns.
Kinetic measurements have nothing causal in common with a mechanism.
The active part of the catalyst is called ,active site”

Only a small number of potentially active atoms are really active at a unit time:
the assumption that all accessible active atoms represent active sites is wrong.

For this reason it is at the present time impossible to determine the activity of
a catalyst: its efficiency in conversion per unit time (tof) or during its lifetime
(ton).

We use approximate scaling (conversion or rate per surface or mass)



The standard model

In heterogeneous catalysis the
catalyst is assumed to contain
stable active sites that are
regenerated into their active
form after each reaction cycle.

The reaction is dynamical.
Reactants can diffuse after
chemisorption to “high energy
sites” and desorb through
dynamics.

The catalyst material is static
and pre-determined by
synthesis: during operation no
structural modification but
participation of charge carrier
reservoirs are assumed.




The single crystal approach (G. Ertl)
Catalysis can only be understood if we know where
the atoms are

system
iry finds

[im

Figure 8.9. Catalyst particle viewed as a crystallite, composed
of well-defined atomic planes.

Somorjai 1981
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The (standard) description of catalysis
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Catalysis general: not as simple as it seems
A+B+cat——>A4- cat- B (1) LH

A-cat- B——> P +cat (2)

ER



Chemistry is energy science:
molecular energy quantities
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Catalysis is energy science:
management of molecular energy quantities
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Microscopic control of activation

Two boundary cases of the activated complex between reactants
and catalyst:
— The activated complex is high in activation energy for adsorption: A
— The activated complex is high in activation for reaction: R

For A the overall catalysis is dominated by adsorption processes.

The classical case of LH kinetics and the only one theoretically
considered.

For B the overall catalysis is dominated by the reaction steps
involving “Taylor sites” and in most cases catalyst dynamics: the
most frequent case in practical catalysis but hard to study as
strongly dependent on reaction conditions.

We will for now concentrate on the simpler case A but not forget
that this is a boundary case of the general dynamic operation of a
catalyst.



Real barriers can be quite substantial
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Consequence of molcular activation

The energy difference between catalyzed and uncatalyzed
processes can be very large: more than 1000kJ/mole.

The catalyst reacts in activated processes with educts and
products:

When products are less stable than educts it will be difficult
to obtain them:

Reaction networks with multiple reactions enhance the
complexity and lead to substantial amounts of the
thermodynamic preferred product.

Mostly undesired water and CO, in organic
transformations.

Catalytic activation of already activated systems (biomass)
leads to enormous selectivity problems.



Ammonia synthesis: our test case
nature does it differently than chemical technology




Thermodynamics and Kinetics

It is intuitive that chemical elementary steps (what is this?)
depend for their velocity on the energetic difficulty.

Steps with large barriers (energies to be invested) are slow.
Steps with large energy liberation are fast.

We apply this to a catalytic process and consider the liberation
of the product as relevant step.

Then we can consider the extent of reaction by the
thermodynamic mass law.

The velocity of the reaction occurs form the partition function
(statistical thermodynamics, Boltzmann law) of the educt in a
translational coordinate describing the liberation of the
product.

If we then assume that the equilibrium is always at the side of
the product and no back reaction should occur we can equalize
the two worlds of kinetics and thermodynamics.



Thermodynamics and kinetics:
activation barrier (AG_, o)
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EW (ev/molecule)

Simplicity: ammonia synthesis

J. Phys. Chem. B, Vol. 110, No. 36, 2006 17721 Theoretical construction of the reaction
profile of ammonia synthesis over Ru at

600 K.
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Adsorption

Concept of surface coverage:
© is surface coverage, (1-8) number of free sites (reactant).

Other reactant is number of adsorbtives (pressure or
concentration).

Then a kinetic derivation can be given.

We consider the rate of reaction between free sites and
reactants.

The complex functional properties of the bonding and de-
bonding of the adsorptive forming the adsorbate is hidden in
reaction rate constants designated ads and des.



Langmuir isotherm

rads - kads p(l_ Q)

rdes = kdes Q
N k
k,p(l-Q)=k, Q) Q=—- p=—%
Nmono ads
N = Noono P Nmono and b are only constants for non-

b+ P specific adsoption and become functions
of chemical potential of adsorptive
(reactants) when chemical processes
occur.
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The Fe-N/H system: basis of Haber Bosch
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How catalysis works:
two simple cases

k ko k
A+ B+cat m—= Aecat®e B——= Pecat—=— P+ cat

Aecate B= Aecatl+ Becat?2 LH
Aecat+B= Aecat+ B ER

gasphase



Relation of elementary steps and

kinetics
rn=kp, (1- Q, - QP) adsorption

= kQ,
v, =k,Q, reaction

— ; This rate law exhibits the
r, = k,Q, desorption

same concentration
behaviour as the
Langmuir isotherm and
the enzymatic reaction

kP,
(ks + k) P+ (f )

1

y —
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Case analysis of rate law:
Note: the simplest possible catalytic
k +k k. reaction

> [ low pressure
ky +ky Ky
k. k k1 = adsorption
ro» —==2 P, first order k2 = reaction
k_ 1 + k2 k3 = desorption
k.+k k | -
D -1 2 V3 hlgh pressure It is appargnt that from quan’Fltgtlve
A k + k k analysis of such rate laws it is
2 3 1 impossible to learn something about
k k the molecular properties of the
7 » 2°"3 Zero Ol/'del/' reaction:
k2 + kS What is a ,reaction mechanism®“?

Why do we do kinetic modelling?
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Time gap of structure

We tend to infer that rigorous catalysis science can only be
done if we know the exact location of atoms.

We accept real structure as high energy sites.

But we ignore the ,time gap” of dynamics occurring under
elevated chemical potentials of reactants.
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molecular flow [mmol/min]

Mean field? The profile reactor
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validation

Mole fraction

Oxidative Coupling of Methane (OCM) =
A Peculiar Catalytic Reaction
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Active sites

The central concept in all types of catalysis.

Act as coordination centres allowing to exchange
adsorbates (fragments) and electrons (oxidation state).

Are modified during chemical bond rearrangement.

In a catalytic cycle they are regenerated in to their most
active initial state.

Adaptivity required as mostly the reaction product is
more reactive than the starting species: selectivity
through autogenous partial deactivation.



Mode of operation of an active phase:

>

A3Ji3u3] |ennualod

A frustrated structural transition

activation

operation

de-
activation
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Catalytic materials

Catalysts are materials that can re-form active sites several
times : the ,,catalytic cycle” as kinetic model: how does this
work?

The details of this re-generation are unclear but decisive for
understanding the role of a material as catalyst.

The “standard model” of catalysis assumes a stable active
site that does not need any regeneration other than
separation of the bond between reactant and catalyst.

Reactions requiring only dissociation as difficult steps
follow this process: ammonia synthesis, CO oxidation SO,
oxidation.

Most other reactions where associations are complex and
can lead to different products (hydrocarbon
transformations) do not follow the standard model.



Realistic Materials

Most catalysts are nanostructures of active
phases supported on a phase with many
functions.

Usually ,,single site” concept as molecular search
for a minimum of atoms active in a catalytic cycle.

Historically active atoms were ,,antennas” for the
underlying band structure of the whole solid.

The reality lies in-between: both aspects co-
operate.



Prototypical situations
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Prototypical situations

n-band 4 eV

bulk MOQO'’s of surface
functional groups
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Dem Anwenden muss das Erkennen vorausgehen

Max Planck

Mache die Dinge so einfach wie moglich aber nicht einfacher

Albert Einstein

Thank You



From concepts to observation
Structural complexity needs to be rigorously accounted for

Empirical

\ 4

Combinatorial

Steady state

Heterogeneous Static surface
Catalysis LH model

Surface
reconstruction

performance
system

Static sites
"dissociate"

CO oxidation
ammonia
NO+CO

High energy
steps
Sub-surface
strained

Selective

Dynamic sites
"associate"

transformations
Sulfuric aid

Chemical
dynamics
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Active sites: aristocratic

Ni

I\lli Ni
Ni—|\|li I\lli
I\|Ji—l\|li—Ni Ni—l\lli

Ni—Ni—Ni—Ni——Ni—Ni—Ni—Ni

Ni—Ni—Ni—Ni—Ni—Ni—Ni—Ni

* |n metals potential sites detectable (AC-HRTEM).
* |In compounds much more involved (termination layer).

Hughes Stott Tayler



Discover by STM that steps are
the dissociating functions even on
single crystal surfaces.

Evidence that “defects” are
important for reactivity.

Was also found by Somorjai
earlier indirectly during
hydrocarbon conversions on Pt
and Pd single crystals (selectivity
control).

Ertl, Wintterlin, science 1989

Ru (0001) and NO
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Reactive states of metals: stability

* Heating in vacuum
removes the defective real
structure of a metal
surface and transforms it
into its pure non-reactive
form:

* Under chemical potential
this process is dynamical
leading to a fluctuating
state of the system
between the inital and
final state seen in thsi
video
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Theory: What coud be possible in Haber-Bosch
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intensity

0

Precison in materials: strained iron

TDS
N, /Fe/W(110)
N, /W(110)

20ML

4ML

S
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temperature / K
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nearest neighbour distance, d._ [A]
Norskov et al. 1999

Strained iron is a much better catalyst.
Experimental and theoretical evidence support this.
Challenge: find a suitable compound, as iron metal will be
deactivated by nitridation.
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Dynamics and ,,excited states”

Dynamics is not kinetics:
Process following a potential gradient is kinetics.

Process fluctuating around an equilibrium structure is
dynamics.

Chemical dynamics is a combination:

Structural fluctuation as consequence of response of
chemical potential:

Transient states between chemically stable states are
relevant: “excited states”.

Ordered translational structure is a boundary case in
catalysis (good for adsorption, poorer for reaction).



Dynamics: a hype term?

dynamics

charge carrier

"ultrafast molecules
dynamics"

fluids and
gasses

transport elementary
phenomena reactions

roto-vibrational chemical

dynamics reactions

"chemical vibrations in
dynamics" solids
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Is dynamics relevant
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The simple reaction O, €= 20:
What about the catalvst ?
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nanocatalysis
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A worked example: IrO, as OER catalyst
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Ir oxide exists as stoichiometric rutile phase considered as active phase.
It reveals a low activity in OER in comparison to an ,,amorphous phase”
Metastable, loaded with defects in the cation- and anion sublattices.
Reaction is defect-driven: how well described in conventional model

studies?



current density / mA cm™

TEY intensity / arb. unit

O as active species for OER

excitation energy / eV

Observing a 3-electrode cell and Pt//nafion//Ir device during operation by NEXAFS
at O-K edge: in 0.1 n sulphuric acid, very low synchrotron light dose.

All other spectroscopic signatures are poorly sensitive due to lack of chemical
information of due to overload with other oxygen species (water, nafion, oxygen).
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Intensity (Cts/sec)

B

Stages of metal oxidation: Cu
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Keywords:

heterogeneous catalysis -
reaction kinetics -

surface chemistry

pressure
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Is the static model of a catalyst
only valid under model conditions?

D D
HC_ CH, ERY
H.J. Freund and team 2014 >=< 7 <""H
H H H  CH,

fast subsurface H diffusion
through low-coordinated surface
sites modified with carbon

surface H

subsurface/
volume-absorbed H

sustained hydrogenation occurs only Pd nanoparticle presence of subsurface H(D) species
on atomically flexible nanoparticles is required for hydrogenation
modified with carbon



Finale: Rigorous systematics

Families of homogeneous
catalysts with known real
structure.

Parameter fields of
performance.

Reduction into kinetic
models and active state
concept. (kinetics with
catalyst transformation
included).

In-situ analysis of functional
state.

Theoretical verification and
mechanistic concept.

ey

| reaction reaction
mechanism network

material |
choice

nano-
structure,
activation

critical
elementary
step

micro-
kinetics

| macro- kinetic
kinetics testing
engineering
realization

* Only parts of the systemic
issue discussed.
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Langmuir Isotherm trends

Cu/MgO 7.3x10° 1.3 x10° Kads 303

Cu/MgO/Zn 1.2 x 108 3x 100
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Water on Cu/ZnQO/Al

In-situ TG Experiment: 30bar, 230°C, 200Nml/min, 400mg

RWGS reaction (250°C, 1bar)

Addition of 1.5%

2O (250°C, 1bar)
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