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A Look Inside the Reactor

Reactants

Products Catalyst pellets

10mm

Supported metal 

particles

100nm

Active surfaces

2nm

T: RT-1000°C+

P: 102bar



3

DTU Cen, Technical University of Denmark

What is In Situ Microscopy

• Depends on who you ask!

• Observations of materials’ dynamic response to an 
externally applied stimulus in the microscope

Does the light stay on…



4

DTU Cen, Technical University of Denmark

Why do We Want to do In Situ Microscopy?

• Conventional electron microscopy 
does not always tell the full story

– Samples are (usually) not in their 
operational environment

• Materials respond dynamically to 
changes in environment

– Surface reconstruction due to gas 
adsorption

– Phase transitions

– Growth

• Essential for establishing 
structure-activity correlations

b5 sites on the (105) surface of Ru. 
These sites were proposed to be 
the active sites for N2 splitting (van 
Hardeveld and von Montfoort Surf. 
Sci 4 (1966) 396. Figure adapted 
from T. W. Hansen et al. Catal. 
Lett. 84 (2002) 7. 
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In Situ Techniques

• In situ XRD

–Phase determination

–Good for large areas

• In situ EXAFS, FTIR

–Coordination

–Chemical bonding

• Average values

–No local information

• In situ TEM

–Gives local information

• Etc…
Evolution of activity of industrial HDS catalysts, 

B.M. Moyse, World Refining Jan/Feb (2001) 28

H. Topsøe, J. Catal. 216, 155 (2003)
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In Situ Microscopy
- Many flavors

In situ TEM

ETEM

Heating/

annealing

STM

Conductivity

Nano-

indentation
FEBID

Light

…probably many 

more…
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Source: Hashimoto et al. Jpn. J. 
Appl. Phys. 7, 946 (1968) 

Historical Overview of ETEM

• Ambient temperature gas stages

– E. Ruska: Kolloid. Zeit. 100, 212 (1942)

• Heating stages

– P.B. Hirsch and A. Howie et al.: Electron 
microscopy of thin crystals (1965)

• The pioneers of environmental TEM

– First E-cells: Hashimoto et al. Jpn. J. 
Appl. Phys. 7, 946 (1968) (older 
conference paper)

– Catalysis work: Baker and Harris

• Carbon deposits

• Sintering

• The differentially pumped system we 
know today: E.D. Boyes and P.L. Gai, 
Ultramicroscopy 67, 219 (1997)

• Differential pumping built into the 
TEM column
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What are We Trying to Achieve?

• Obtain high-resolution 
information

• Dynamic responses of 
materials as they are 
exposed to reactive 
gases at elevated 
temperatures

• Surface structure of 
materials in various 
environments

• Morphology of materials 
in different surroundings

D. S. Su, T. Jacob, T. W. Hansen, D. Wang, R. Schlögl, 
B. Freitag, and S. Kujawa, Angew. Chem. 47, 5005 (2008)
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Methanol Synthesis
- a structure-sensitive reaction
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Grunwaldt et al., J. Catal. 194, 452 (2000)

Clausen et al., Topics Catal. 1, 367 (1994)

Dry: H2/CO/CO2 (90:5:5)

Can in situ HR-TEM unravel the details?

Cu/ZnO

3 H2 + CO2  CH3OH + H2O

CO + 2H2  CH3OH 

CO2 + H2  CO + H2O
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Equilibrium Shapes versus Gas 
Composition

Cu(111),

d=0.21nm

Cu(200),

d=0.18nm

ZnO(011),

d=0.25nm

H2

1.5mbar, 220oC

More oxidizing More reducing

ZnO(012),

d=0.19nm

Cu(111)

Cu(111)

H2/H2O

1.5mbar, H2/H2O=3/1, 220oC

Cu(111)

ZnO(011)

H2/CO

1.5mbar, H2/CO=95/5, 220oC

P. L. Hansen, J. B. Wagner et al. Science 295, 2053-2055 (2002)
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ENVIRONMENTAL TRANSMISSION 
ELECTRON MICROSCOPE DESIGN



12

DTU Cen, Technical University of Denmark

The Environmental TEM

• Methods - instrumentation
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Column Design

• Monochromated FEG electron 
source

• Differential pumping system
1. Gas is leaked in (<10Nml/min)

2. First set of diffusion limiting apertures

3. Turbo molecular pump

4. Second set of diffusion limiting apertures

5. Turbo molecular pump

6. Ion getter pump (IGP)

• Flow build up pressure (<2000Pa)

• Pressure at FEG source (<10-7Pa)

• Direct line of sight!

T.W. Hansen, JBW et al., Mater. Sci. Technol. 26, 1338 (2010)
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The Environmental Cell
- not really a cell…

• Main purpose: to confine the gas to the vicinity of the 
sample thus making the gas path length along the 
direction of the electrons as short as possible

Reactive 

gas Pumping

e- beam
P T

Resistive 

heating
Capillary for 

residual gas 

analysis via QMS

5mm
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What is Environmental TEM Not?

• It is NOT UHV science
– We have a high degree of control of the gas composition and 

temperature inside the sample region, BUT, it is not a UHV chamber

• It is NOT operando microscopy/spectroscopy
– We are limited in especially pressure. We cannot expose samples to 

the conditions found in real reactors (but we are getting closer)

• It is NOT large scale science
– It is still microscopy. We are investigating very small quantities of 

material

– Kinetics and reaction products are complicated to measure
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Conditions (pressure gap)

• Orders of magnitude

– Conventional TEM ~10-8mbar

– Environmental TEM ~101mbar

– Closed cell holder in TEM ~103mbar

– Bench scale reactors ~103mbar

– Industrial reactors ~105mbar

• We have gone most of the way…
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Imaging in the Fog
- How does the atmosphere affect imaging

Can we get a clear view...?
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Question?

• If you have 1000Pa of gas in the sample region, how thick 
a sample of say, C or Ni does that correspond to?

– Assume T = 300°C

– C: 12u, density = 2.3×106g/m3

– Ni: 59u, density = 8.9×106g/m3

– Assume 10mbar in the E-cell

– Assume pole piece gap = 5mm

– Gas constant R=8.3×10-5 m3 bar K-1 mol-1
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Solution
• Gas density:

• In the sample region:

• Ni:

• Corresponding thickness:
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Loss of Intensity

• Main effect of imaging in 
gas is loss of intensity

• Intensity measured on a 
bottom mounted camera

• Increasing pressure leads 
to loss of temporal 
resolution
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T. W. Hansen and J. B. Wagner, Microscopy and 
Microanalysis 18, 684 (2012)
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Loss of Intensity

• Main effect of imaging in 
gas is loss of intensity

• Intensity measured on a 
bottom mounted camera

• Increasing pressure leads 
to loss of temporal 
resolution
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CTF in the Presence of Gas
• Power spectrum of amorphous 

carbon film (imaged at -410nm 
defocus)

5  1 / n m5  1 / n m

Vacuum

1 0  n m1 0  n m

Vacuum
5  1 / n m5  1 / n m

1700 Pa Ar

1 0  n m1 0  n m
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CTF in the Presence of Ar
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Experimental Technicalities and 
Considerations
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Feeding gas to the E-Cell

• Due to the minute power available from conventional 
heating holder, even small changes in the flow rate 
induces major temperature changes resulting in holder and 
sample drift

• The total flow in the E-cell is low compared to even bench 
scale reactors, thus small variations in flow can result in 
large deviations in partial pressures of the gas components

• A high degree of control is needed to ensure accuracy and 
resolution in your experiment

• Digital Mass flow controllers provide accurate control of 
the gas flow

• Do your gases react with each other?
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Cleanliness and Gases
• Due to the low total pressure (~500 Pa) and flow (~5Nml/min), 

online monitoring of the gas composition is crucial
– Leaks are crucial!

– Desorption from pipe walls from earlier experiments

• Online mass spectroscopy can be used to monitor the gas 
composition during your experiment

• High purity gases should be used to minimize contamination in 
the system

– Your sample will see whatever impurities you have in your gas supply or from 
leaks in the systems (e.g. O-rings)

• For general housekeeping in the sample region, in situ plasma 
cleaning can be used. This can also be used to remove 
hydrocarbon contamination on the sample surface

– Take care! Does plasma cleaning effect your sample?

• Carrier gases are in general not used as this would significantly 
lower the partial pressures in the sample region and contribute to 
the overall contamination during the experiment
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Holders
• Can provide heat to the sample

• In an ETEM:
– Resistance to the atmosphere (e.g. 

oxidizing)

– Limited power

– Can be a problem to maintain 
temperature in a flowing gas

• Conventional holders are bulky and 
tend to drift during a heating ramp

• Alternatives
– Laser heating

– MEMS
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MEMS

• Micro Electro-
Mechanical Systems

• Small area is heated

• Limited drift

• Fast heating and 
cooling ramps

• E.g. Protochips and 
DensSolution holder
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Grids

• Grids are usually chosen complementary to sample 
composition to ensure accuracy of spectroscopic data 
(EDX/EELS). Normally Cu grids are used (95% of sales)

• When doing in situ experimentation, grids must be chosen 
based on the conditions which the samples will be exposed 
to

• Things to consider:
– Temperature. What is the melting temperature of the grid material?

– Is the material prone to oxidation?

– Will the grid in any way react with the gas phase in the E-cell?

• Some materials may have a significant uptake of gases

• “Use molybdenum grids for TEM studies when high 
temperature and inertness are needed” Quote from grid 
manufacturer.

– Probably true, but not under an oxidizing atmosphere where volatile 
MoOx species are formed
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Cu Grids

• Cu grid treated in O2 at 500°C

1  µ m

1  µ m
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Stainless Steel Grids...

• Ca. 5mbar 50/50 H2/H2O at 
750°C

• EELS shows FexOy

• ...not so stainless 
anymore...
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Experimental Considerations:
Reference Experiments

• What do we expect to observe?
– Assess or verify an observable effect in an external setup under the 

conditions in the ETEM prior to experimentation

– Do things happen on a time scale feasible for ETEM experimentation?

• How can the effect of the beam be deconvoluted from the 
obtained data?

– Verify validity of derived kinetic parameters, compare with numbers 
obtained from other techniques (never rely on a single technique)

– Do ex situ investigations prior to time consuming environmental TEM 
studies

– “Blind” experiments in the ETEM might elucidate a potential effect of 
the electron beam



35

DTU Cen, Technical University of Denmark

Imaging Au in Hydrogen at Increasing 
Pressure

• Au on graphene

• P=10-6mbar

• P=2.9mbar

• P=4.3mbar
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APPLICATIONS
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Solid Oxide Fuel Cells
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Solid Oxide Fuel Cells



39

DTU Cen, Technical University of Denmark

Fuel Cell Anode Failure

• Redox stability of NiO/YSZ based anode

Q. Jeangros et al., Acta Mater. 58, 4578 (2010)
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In Situ Red(ox) Process of Solid Oxide 
Fuel Cell Anode

Q. Jeangros, JBW et al., Acta Mater. 58, 4578 (2010)

Reduction
150Pa H2
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In Situ (Red)ox Process of Solid Oxide 
Fuel Cell Anode

Q. Jeangros, JBW et al., Acta Mater. 58, 4578 (2010)

Oxidation
320Pa O2
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Imaging at Different Length Scales
-2D to 3D and irreversible changes 

FIB slice of NiOx/YSZ based SOFC

ETEM

SEM

Q. Jeangros, JBW et al., Acta Mater. 58, 4578 (2010)
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Reduction of NiO/YSZ

EFTEM imaging (O K edge), 2K/min heating ramp

Q. Jeangros, JBW et al., Chem Commun. 50, 1808 (2014)
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Reduction of NiO/YSZ

Q. Jeangros, JBW et al., Chem Commun. 50, 1808 (2014)
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Catalyst Deactivation Mechanisms

• Catalysts are used in 90% of chemical reactions today

• ~15% of the GNP in the industrialized countries depends 
on catalysts

• Poisoning

– Blockage of active sites by reactant molecules or 
contamination, e.g. S atoms

• Breakdown of the pellet structure

– E.g. formation of carbonaceous filaments in steam reforming 
catalysts breaking the pellet structure from the inside

• Sintering

– Growth of the active metal particles at the expense of surface 
area

– One of the most important deactivation mechanisms in 
supported metal catalysis
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Catalyst Deactivation:
Ostwald Ripening

• Effectively, large particles grow on the expense of small 
particles

• Particle size distributions

Support

Diffusion control Interface control

J. A. Horsley et al., Stability of Supported Catalysts: 

Sintering and Redispersion (Catalytica Studies Division, 1991)
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Particle Size Distribution from 
Ostwald-Ripening

• Theoretically, particles 
sintered by O-R produce a 
PSD with a tail on the 
small-diameter side and a 
sharp cut-off to larger 
diameters

• Time-independent PSD:

R. Finsy, Langmuir 20, 2975 (2004)
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Catalyst Deactivation:
Particle Migration and Coalescence

Particle diffusion coefficient, 

Gruber formulaSurface diffusion coefficient

Support

G. Somorjai, Principles of Surface Chemistry (Prentice-Hall) (1976)

E. E. Gruber, J. Appl. Phys. 38, 243 (1967)
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Particle Size Distribution from Particle 
Migration and Coalescence

• Theoretically, particles 
sintered by PMC produce a 
PSD of log-normal shape

• PSDs have a sharp cut-off 
on the small diameter side 
and a tail on the large 
diameter side
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Particle size distribution

Thanks to Nicolai Støvring and Phillip Brinck Vetter
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Au/Graphene

• Ca. 4x real time

• RT, 200Pa H2

• Particles are more dynamic and 
move around the support

• Coalescence events are 
observed, but still occur slowly

• Resulting particles still only 
slowly retain an equilibrium 
shape
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Au/Graphene

• Ca. 8x real time

• 104˚C, 200Pa H2 

• Cross correlation used for image 
alignment

• At low temperatures, particles wobble 
around equilibrium positions, but do not 
tend to migrate long distances

• Particles in close proximity can coalesce 
into to single particles, but do not readily 
form single crystalline structures
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Au/Graphene
• Ca. 8x real time

• 305˚C, 200Pa H2

• Particles still coalesce readily

• Both initial and final particles appear crystalline at 
all times.

• Smaller particles are absorbed by larger particles

•
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Au/Graphene

• Ca. 8x real time

• 403˚C, 200Pa H2

• Event following both mechanisms 
occur simultaneously

– Top: PMC

– Middle: OR
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Conclusions

• Nanoparticles are highly mobile in harsh environments

• Multiple sintering mechanisms can work simultaneously

• Mechanisms?

– Migration and coalescence

– Ostwald ripening

– Suction of matter when particles are in close proximity

• Nanoparticles can merge as crystalline entities

• Mass is rapidly distributed throughout resulting particles
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ANISOTROPIC OXIDATION
Copper oxide nanowires
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Copper Oxide Nanowires

• Advanced properties for
– Gas sensors

– Bio sensors

– Field effect transistors

– Optoelectronic devices
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Post Mortem characterization of CuO
NWs

S. Rackauskas, JBW et al., Nano Letters 14, 5810 (2014)

…but how do they grow?
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Ex situ Cu oxidation

• 400˚C

Ambient air 20 Pa O2
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Oxidation of Cu particles in the SEM

• Temperature: 450C

• Atmosphere: Oxygen

• Video: 100 x realtime

M. M. Kone, M. Ahmed, and A. Fuller.
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Oxidation of Copper

• Cu particle (5µm)

• 310Pa O2

• Heating to 350˚C
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Oxidation of Copper

• Cu particle (5µm)

• 680Pa O2

• Heating to 350˚C
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Lowmag movie of growth

• T=370˚C

• P=680Pa
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How does it Grow?

• 680Pa O2

S. Rackauskas, JBW et al., Nano Letters 14, 5810 (2014)

2nm
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PLANAR GROWTH OF CARBON LAYERS
Graphene(?)
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In situ Carbon Growth on Ni

• T=650˚C in 120Pa H2

• Leaking in 3×10-2Pa C2H2

• 0.61s between
each image

Quick initial growth shortly 
after flowing acetylene

Growth of the layers and 
the growth front can be 
followed

J. Kling, T. W. Hansen, JBW, Carbon 99, 261 (2016)
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In situ Carbon Growth on Ni

a b

c
d

ETEM experiment; T=650˚C; 120Pa H2/3×10-2Pa C2H2

Well aligned carbon layers at the Ni surface (a-c)
EELS shows C edge for graphitic structure (d)
Several growth fronts observed (e-h)

e f

g h

0s 0.61s

1.22s 1.83s

J. Kling, T. W. Hansen, JBW, Carbon 99, 261 (2016)
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WATCHING THE REACTION
Soot oxidation by Ag
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Soot oxidation by Ag catalyst

• Remove soot particles in exhaust of diesel engines by filters for a 
cleaner and healthier environment

• Low temperature regeneration of filters to reduce fuel
consumption

Loose contact Tight contact

D. Gardini, JBW et al. Appl. Catal. B 183, 28 (2016)
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Silver Catalyst for Low Temperature 
Soot Oxidation

• Soot:silver= 1:5 wt:wt, 

• Heating ramp = 11˚C/min, 

• 1 NL/min, 10.2 vol% O2 in N2.
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Loose contact

• P=300 Pa O2
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Tight contact

• P=300 Pa O2
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Silver mobility on loose contact

• P=300 Pa O2

• Ag/soot interface increases
during oxidation

D. Gardini, JBW et al. Appl. Catal. B 183, 28 (2016)
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Silver mobility on loose contact

• Ag/soot interface increases during oxidation

• Ag detaches

D. Gardini, JBW et al. Appl. Catal. B 183, 28 (2016)
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SHINING LIGHT ON THE ETEM
Prospects for Photocatalysis studies
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Putting Light in the Microscope

F. Cavalca, JBW et al. Nanotechnology 23, 075705 (2012)
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In situ Cu2O photocorrosion

• Cu2O is a photocatalyst for water splitting under visible light illumination.

• It undergoes photodegradation in an aqueous environment.

• The L2,3 thresholds («white-lines») reflect the oxydation state of Cu

• The reaction is performed in absence of the electron beam

• 300 Pa H2O with λ=405nm

Cu-L2Cu-L3

F. Cavalca, JBW et al. Nanotechnology 23, 075705 (2012)

Before reaction After reaction

In absence of e-beam
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• Cu2O nanocubes are stable 
in the electron beam at 
300 kV in high vacuum

• Reduction from Cuprous 
Oxide (Cu2O) to metallic Cu 
in presence of water vapor

• Verified by electron 
diffraction

• Verified by electron 
energy-loss specroscopy

– EELS spectra of Cu2O and 
metallic Cu

– The L2,3 white-lines ratio 
reflect the chemical state of 
Cu

Cu2O photocatalyst for Water splitting
Degradation of Cu2O nanocubes in H2O (5 mbar) under 

visible light illumination (405 nm) for 3 hours.
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