

Non-Aqueous Fluorolytic Sol-Gel Synthesis

Erhard Kemnitz Humboldt-Universität zu Berlin

FHI Berlin, 25th November 2016

1. The *fluorolytic* sol-gel-synthesis of metal fluorides

- the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications of nanoscaled metal fluorides
- 4. Summary

Why metal fluorides?

- Electrochemical energy storage (Li batteries)
- Solid Lewis-acids (catalysis, adsorption)
- ➢ Melting point depressiva (welding, ceramics, …)
- Transmission in UV and IR (optics, laser)
- Low refractive index (optics, photovoltaic, glasses)
- >Hydrophobicity (coating, sealing,...)
- Anti-fungicidal properties (surface protection)
- Corrosion protection against fluorine-containing gases

Synthesis of nano-metal fluorides – state of the art so far

- 1. Synthesis of nano-metal oxides (via sol-gel)
 - followed by fluorination $M(OR)_x \quad nano-MO_{2/x} \quad T \quad MF_x$
- 2. Synthesis of metal trifluoroacetates (TFA sol gel route)
- followed by thermal decomposition $M(OR)_x/MOAc + CF_3COOH ___M(TFA)_x$ T MF_x

Fujihara in P. Yang (Edt.), The Chemistry of Nanostructured Materials,

4 World Scientific Publ., Singapore 2003

1. The *fluorolytic* sol-gel-synthesis of metal fluorides

- the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameters
- 3. Applications of nanoscaled metal fluorides
- 4. Summary

Sol-Gel Synthesis

Precursorsolution (alcoxide, acetate,..)

Particle formation

nanoparticle-sol

anti-reflective coating of glass surfaces

Coating

Sol-Gel Synthesis

Angew. Chem. 2003, 115, 4383-4386 / Review: Dalton Trans. 2008, 1117-1127 Review: *Dalton Trans.*, **2015**, *44*, 19411-19431

9

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications of nanoscopic metal fluorides
- 4. Summary

MAS-NMR as a powerful tool to follow the reaction path of the fluorolytic sol-gel reaction

Fluorolysis: $AIF_x(OR)_{3-x} \cdot ROH^{27}AI$ chemical shift

J. Phys. Chem. C 2009, 113, 15576–15585

Chem. Mater., **2007**, 19, 2229-2237. J. Phys. Chem., C, **2009**, 113, 16674–16680. ¹³J. Phys. Chem., C, **2009**, 113, 155786-15585. Dalton, **2011**, 40, 8701-8 710.

Structures of aluminium alkoxide fluorides obtained from sols of varying aluminium isopropoxide to HF ratios sorted according to their AI to F ratio within the structure. 1: $AI_4(OiPr)_{12}$; 2: $AI_3F(O'Pr)_8 \cdot D$ (D = Py, DMSO), AI:F = 3:1; 3: $AI_4F_4(\mu_4O)(O'Pr)_5(H('PrO)_2)$, AI:F = 1:1; 4: $AI_5F_5(\mu_5O)(O'Pr)_8$, AI:F = 1:1; 5: $AI_7F_{10}(\mu_4O)(O'Pr)_9 \cdot 3Py$, AI:F = 1:1.43, 6: $AI_{10}F_{16}(\mu_4O)_2(O'Pr)_{10} \cdot 4Py$, AI:F = 1:1.6, 7: $AI_6F_{10}(O'Pr)_8 \cdot 4Py$, AI:F = 1:1.67 Schematic representation of the formation of highly distorted nanosopic aluminium fluoride by reacting aluminium isopropoxide with anhydrous hydrogen fluoride in isopropanol as solvent.

 \bigotimes : AlO_{6-x}F_x O: O/PT O*: HO/Pr

Nanoparticle formation proceeds very fast 85% Sr(OLac)₂, 5% Ce(OAc)₃ and 10% Tb(OAc)₃ (0.2 mol/l) with 2.15 eq. HF/MeOH within 30 sec under illumination at 254 nm.

Impact of various synthesis parameters

General rule: only soluble precursors yield transparent sols

Solvents and precursors

 $Mg(CH_{3}COO)_{2} \bullet 4H_{2}O \rightarrow (Mg_{5}(\mu_{3} \bullet OH)_{2}(OAc)_{8} \bullet 1.19H_{2}O) \rightarrow Mg(CH_{3}COO)_{2}$

Caution: fast formation of insoluble alcohol-solvates

Metal alkoxide precursors

Availability and durability: Mg methoxide as precursor Mg + 2CH₃OH \rightarrow Mg(OCH₃)₂ + H₂ \rightarrow + 2HF \rightarrow MgF₂ + 2CH₃OH

Metal alkoxides: Mg-Ethoxide (it is insoluble!)

 $Mg(C_2H_5O)_2 + 2CO_2 \rightarrow EtOH + Mg(C_2H_5OCO_2)_2$

Brutto reaction $Mg(OEt)_2 + 2 HF \rightarrow MgF_2 + 2 EtOH$

J. Mater. Chem. C, 2016, 4, 1454-1466

19

The HCI-mediated route

 $xMg(OMe)_2 + yMgCl_2 + 2(x+y)HF \rightarrow (x+y)MgF_2 + xMeOH + yHCI$

J. Mater. Chem. C, 2016, 4, 1454-1466

20

Rationalisation of the reaction mechanism

Which horse to ride? It depends on the way you go...

Horse or maule horse: fluorine or oxygen, fluorides or oxides?

Many fluorides are accessible via sol-gel

() MF: M = Li, Na, K, Ag, ...

• MF_2 : M = Be, Mg, Ca, Sr, Ba, Zn, Fe, Cu,...

- MF_3 : M = AI, In, Ga, Cr, Fe, V
- **(**) MF_2/MF_X : M = Mg, Zn; M = Cr, Fe, V, Ti, Zr, Sb, Ta, Nb, ...

23 *J. Fluorine Chem.* **2007**, 128, 353-368, Handbook "Sol-Gel Sciences, Chapter 28, 2016 in press

Novel applications due to homodispersed nanoscaled metal fluorides

Antireflective coating

Meso structured materials Heterogeneous catalysis

Up- & down-coversion

MF_n sols

MF_n based composites

New ceramics

Dentistry

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - topological aspects MgF₂
- 3. Applications: up- and down conversion
- 4. Summary

Magnesium ethoxide precursor

...is insoluble in methanol, ethanol, isopropanol,....

EtOH >> $Mg(C_2H_5O)_2 + 2CO_2$ $Mg(C_2H_5OCO_2)_2$ 2nd step 1st step 1st step 2nd step slow fast HF MF₂ precursor formation fluorination MgF₂ HF soluble nano nano soluble CO_2 **CO**₂ gas gas MCl_2 soluble HCl MgCl₂ soluble soluble $Mg(EtOCO_2)_2$ EtOCO₂H soluble unstable $Mg(OEt)_2$ $Mg(OEt)_2$ EtOH insoluble HF MgF₂ EtOH *solid, insolube* soluble soluble soluble nano $MCl_2 + 2 HF \rightarrow MF_2 + 2 HCl$ $Mg(OEt)_2 + 2 HF \rightarrow MgF_2 + 2 EtOH$ 1st: Mg(OEt)₂ + 2 CO₂ \rightarrow Mg(EtOCO₂)₂ **2nd:** Mg(EtOCO₂)₂ + 2 HF \rightarrow MgF₂ + 2 EtOH + 2 CO₂ **Brutto reaction Brutto reaction** (1-x) Mg $(OEt)_2 + x$ MCl₂ + 2 HF $Mg(OEt)_2 + 2 HF \rightarrow MgF_2 + 2 EtOH$

Novel applications due to homodispersed nanoscaled metal fluorides

Antireflective coating

Meso structured materials Heterogeneous catalysis

Up- & down-coversion

MF_n sols

MF_n based composites

New ceramics

Dentistry

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - Synthesis parameter
- 3. Applications: antireflective coatings
- 4. Summary

Selected physical data of different materials

Formula	Structure	F _p	opt. range	n	solubility
BeF ₂		555°C			good in H ₂ 0 EtOH
MgF ₂	rutil	1256°C	120nm - 8µm	1,38	0,13 g/L
CaF ₂	cubic	1423°C	130nm - 8µm	1,40	0,016 g/L
SrF_2	cubic	1477°C	130nm - 11µm	1,44	0,11 g/L
BaF ₂	cubic	1368°C	150nm - 12µm	1,48	1,60 g/L
SiO ₂	diamond	1713°C	150nm - 4μm 50μm - 1000μm	1,54 (thin film)	0,01 g/L quarz 0,12 g/L am. SiO ₂

AR – Layers based on MgF₂

Layer	n _{sub}	n _{film}	d _{film}
Borofloat	1,47	1,261	103 nm
Optiwhite	1,52	1,268	103 nm

Thin Solid Films **2008**, 516, 4175 *Phys. Stat. Sol.* **2008**, 205, 821

Antireflective (AR) and interference layers optical data

B. Lintner: Prinz Optics

- Optical data for MgF₂ (left) and CaF₂ (right) layers of different thickness.
- In both cases, the optical transmission is nearly 100% over a wide range of wave lengths

Benefits: (i) No light loss, (ii) gain of efficiency compared to "state of the art"-SiO₂-coatings of at least 4 to 5% resulting in higher energy yield

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications: inorganic-organic composites
- 4. Summary

Manufactering of nano composites

Composite of 10% PA-stabilized MgF₂ in PolyHEMA

Radical induced polymerisation with benzoylperoxide at 60-90°C

Characterization of nano composites

Optical transparancy: No agglomeration or phase separation

EDX: Homogeneous distribution of magnesium and fluorine in the polymer

Nanoscale 2011, 3, 4774-4779

Characterization of nano composites

Ellipsometric determination of the refractive index of the composites

- Decrease of refractive index of polymer materials is possible
- fine tuning by addition of nano-MgF₂ successful

Nanoscale 2011, 3, 4774-4779

Mechanical properties of composites

cratch resistance raises

Nanoscale 2011, 3, 4774-4779
Polymerisation of bulk-composites

Stabilised MgF₂-Sol in HEMA:

- Radical induced polymerisation with benzoylperoxid @ 60-90°C

Glass transition temperature by DMA:

sample	0%	2,5%	5,0%	10%	20%
T _g in °C	102	108	118	118	126

→ High Transparency

 \rightarrow Increasing T_q with increasing MgF₂ content

 \rightarrow Decreasing refractive index with increasing MgF₂-content

 \rightarrow Increasing Hardness with increasing $\rm MgF_2$ content

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications: Catalysis
- 4. Summary

AIF₃ an exciting solid Lewis acid

Aluminium fluoride phases – structures and synthesis

Fluoride Ion Affinity (FIA) – the pF Scale

 $L_a + :F^- \rightarrow [L_a - F]^-$ FIA = $-\Delta_r H$ ($L_a \sim Lewis acid$)

Molecula	FIA ^a	pF ^b	FIA ^a	pF ^b	
WOIECule	meas	meas	calc	calc	
BF _{3(g)}			351	8.38	
BCI _{3(g)}			405	9.67	
AIF _{3(g)}	488	11.66	484	11.56	
AICIF _{2(g)}	491	11.73	494	11.80	
AICI ₂ F _(g)	499	11.92	501	11.97	
AICI _{3(g)}	506	12.09	506	12.09	
AIBr _{3(g)}			512	12.23	
$AI(O^{t}C_{4}F_{9})_{3(g)}$			537	12.83	
GaF _{3(g)}	461	11.01	453	10.82	
GaCl _{3(g)}			445	10.63	
AsF _{5(g)}			426	10.17	
SbF _{5(g)} ^c			489	11.68	
^a in kJ mol ⁻¹					
^b pF = FIA/(41.868 kJ mol ⁻¹)					
^c 490 kJ mol ⁻¹ is a good average value for liquid SbF ₅ containing oligomers					
Sb _n F _{5n} (n = 1, 2, 3, 4)					
Measured values from ^{59, 60} : Calculated values from ^{52, 53, 57}					

Fluoride ion affinities (FIA) and pF values of selected molecules (meas ~ measured, calc ~ calculated).

K. O. Christe et al., J. Fluorine Chem., 2000, 101, 151-153

Modelling the Lewis Acidity of AIF₃ Surfaces

Schematic pictures five-fold coordinated aluminium on the surface of AlF_3 . Spheres ~ AlF_3 bulk network.

Calculated reaction enthalpy of ammonia with different aluminium halides. The highest binding energy at β -AIF₃ is bold marked. T1 and T6 are two different accessible sites at the (100) surface of β -AIF₃. Molecular compounds are given for comparison.

Species	Centre Type ^a	∆H(I kJ m	NH ₃) 10l ⁻¹	Comment ^b			
α-AIF _{3(s)}	Al [∨] type 2 Al [∨] type 2 Al [∨] type 3	129 133 141		, largest surface, stable termination , small surfaces at edges of crystallites , small surfaces at corners of crystallites			
	Al [∨] type 1	173		, possible metastable termination			
β-AIF _{3(s)}	Al [∨] type 1	179189 169179 151166		surface ^c minor sites T1		NH ₃ coverage	
	Al [∨] type 2	149154 128135 117119		surface ^c major sites T6	6	NH_3 coverage	
	Al [∨] type 2	≈132		(010) surface	low	NH ₃ coverage	
AIF _{3(g)}	Molecular	168.0	169.9	484			
AICI _{3(g)} d	Molecular	160.3		506			
AlBr _{3(g)} ^e	Molecular	158.9	158.3	512	For comparison:		
$AI(O^{t}C_{4}F_{9})_{3(g)}$	Molecular	158.7		537	FIA in kJ mol ⁻¹		
SbF _{5(g)}	Molecular	160.8	166.5	489			

Nanoscopic high surface (HS) aluminium fluoride

Angew. Chem. Int. Edit. 2003, 42, 4251, Chem. Mater. 2008, 20, 5687

44

HS-AIF₃: Some physical properties

- X-ray → amorphous •
- TEM
- → nano crystalline

 \rightarrow pure AIF₃ (BE~77,5 eV)

→ 200-450 m²/g

- BET-S_a •
- XPS

•

- EDX \rightarrow phase pure (traces O, ads. H₂O)
- IR and NMR •
- AI K-edge XAS •
- \rightarrow high degree of disorder
- \rightarrow disordered structure of dried fluoride alkoxide precursor is preserved during fluorination

(meso-porous, narrow pore size distribution)

Al-surface sites CN < 6 Lewis acidity •

J. Phys. Chem. C 2009, 113, 15576–15585

45

Acidity HS–AIF₃ CO-adsorption

J. Phys. Chem. C 2009, 113, 15576, J. Phys. Chem. C 2007, 111, 18317

Aluminium chlorofluoride (ACF)

 $AICI_3 + (3-x) CCI_3F \rightarrow AICI_xF_{3-x} + (3-x) CCI_4$

¹⁹F MAS NMR spectra (376 MHz) of α -AIF₃ and β -AIF₃ (v_{rot} = 30 kHz) compared to HS-AIF₃ and ACF (v_{rot} = 25 kHz). Inset: Magnification of terminal fluoride signals at –190 ... –215 ppm. (*) Spinning side bands.

C. G. Krespan and V. A. Petrov, *Chem. Rev.*, 1996, **96**, 3269-3302, T. Krahl and E. Kemnitz, *Angew. Chem. Int. Ed.*, 2004, **43**, 6653-6656.

47

Some examples proofing the catalytic potential of AIF₃

Heterogeneous C-H-activation at room temperature without precious metals

Chem. Eur. J. **2011**, 17, 14385-14388

49

Heterogeneously catalysed hydroarylation of olefins

(rt & 70° C and at low pressure < 2 bar)

 $R_1 = H, CH_3; R_2 = H, CH_3$

 $R_1 = H; R_2 = n - C_4 H_9$

R₂ = H, CH₃; R₃ = H, F

Reactivity of 3,3,3-trifluoropropene towards different Lewis acids

Note the change in chemoselectivity in case of ACF

Catalyst	X[%]
AICI ₃	< 0.1
ACF	> 90
HS-AIF ₃	> 90
β -AIF ₃	0

ACF – aluminium chloride fluoride (AlCl_xF_{3-x} – 0.3 < x > 0.1)

Liquid phase: room temperature, 10µl/mg.cat

SbF₅: X>90% at ca. 80° C!

Inorg. Chem., 2003, 42, 6474 & *Angew. Chem. Int. Ed.* 2003, 42, 4251 Review: *J. Fluorine Chem.* 127 (2006) 663-678

C–F activation reactions

Catalytic dehydrohalogenation of 3-chloro-1,1,1,3tetrafluorobutane. Thermodynamic or kinetic control is achieved by different contact times.

Proposed mechanism for the dehydrohalogenation of 3chloro-1,1,1,3-tetrafluorobutane. The square indicates a free coordination site at the metal ion

Can ACF or HS-AIF₃ interact with $Et_3SiH \rightarrow silylium$ ion formation?

R = fluorinated alkanes, but no methanes or perfluorinated alkanes

- new heterogeneous approach for the cleavage of C-X bonds
- based on silvlium-ion chemistry from homogeneous catalysis
- in the presence of Benzene -> Friedel-Craftsproducts
- heterogeneous concept:
 - strong Lewis-acids like AICl_xF_{3-x} (x=0.05-0.3) (ACF) and HS-AIF₃
 - surface-bond silylium-like species
 - substrate (RF): fluorinated and chlorinated compounds

Angew. Chem. 2013, 125, 5436

TONs under different conditions

		benzene	o-C ₆ H ₄ Cl ₂	neat
2 d / r.t.	CH ₃ F	195	190	400
4 d / r.t.	CH_2F_2	22	80	120
4 d / 70 ° C	CHF ₃	20	5	5

- still traces of Friedel-Crafts products in o-C₆H₄Cl₂
- CHF₃: first Friedel-Crafts reaction could be important

C-F-activation

How does it work?

R = fluorinated alkanes, but no methanes or perfluorinated alkanes

heterogeneous concept:

strong Lewis-acids like AICl_xF_{3-x} (x=0.05-0.3) (ACF) and HS-AIF₃

> surface-bond silylium-like species

substrate (RF): fluorinated and chlorinated compounds

¹H MAS NMR of surface bound Et₃SiH with the Si–H resonance at δ = 3.45 ppm (v_{rot} = 10 MHz). Et₃SiH in C₆D₆ solution: at δ = 3.85 ppm.

Angew. Chem. 2013, 125, 5436

Bifunctional, Lewis and Brønsted-acids? Can we make use of the competitive hydrolysis reaction? $M(OR)_n$ + nHF + nH₂O \longrightarrow MF_n or $M(OH)_n$ or $MF_{n-x}(OH)_x$? Two possible scenario **1)** $M(OR)_n$ + nHF + mH₂O \longrightarrow MF_{n-x}(OH)_x 2) $M(OR)_n + yHF + xH_2O \longrightarrow MF_v(OH)_x (x+y=n)$

Review: *J Fluorine Chem* **2007,** *128* (4), E. Kemnitz in *Functionalized Inorganic Fluorides*, Ed. Alain Tressaud, Publishers Wiley 2010, Chapter I: p.1-35; Review *Dalton Trans.*, **9** (2008) 1117 – 1127, Review: *Catalysis Science & Technology* **2015,** *5*, 786-806;

1117 – 1127, Review: Catalysis Science & Technology 2015, 5, 786-806;

Sol-gel-synthesis of magnesium (hydr)oxo fluorides

Review: *J Fluorine Chem* **2007**, *128* (4), E. Kemnitz in *Functionalized Inorganic Fluorides*, Ed. Alain Tressaud, Publishers Wiley 2010, Chapter I: p.1-35; Review *Dalton Trans.*, **9** (2008) 1117 – 1127, Review: *Catalysis Science & Technology* **2015**, *5*, 786-806;

Can we rationalize Brønsted acidity of a Mg-OH group?

 \bullet elektronegative fluoro ligands \rightarrow stronger Lewis-acidic Mg-sites

- \bullet elektronegative fluoro ligands \rightarrow stronger Lewis-acidic Mg-sites
- flexible "dangling" OH-groups

- \bullet elektronegative fluoro ligands \rightarrow stronger Lewis-acidic Mg-sites
- **o** flexible "dangling" OH-groups
- **o** bridging OH-groups

- \bullet elektronegative fluoro ligands \rightarrow stronger Lewis-acidic Mg-sites
- **o** flexible "dangling" OH-groups
- **o** bridging OH-groups
- **o** formation of hydrogen bonds???

Vitamin E synthesis

Vitamin E synthesis

catalyst	IP/cat. molar rat.*	time min	selectivity to Tocopherol
MgF ₂ -40	119	300	76,3
MgF ₂ -57	76	300	82,6
MgF ₂ -71	123	300	87,0
MgF ₂ -71	123	180	> 99,9

MgF ₂ -87	60	360	0
MgF ₂ -100	37	360	0
MgF ₂ -K	n.b.	1200	0

Conversion of IP (X = 100 %). *ratio calculated based on NH_3 -TPD-results.

Inverse Opale für Photonic/ Katalyse

PMMA kolloidaler Kristall Partikeldurchmesser ca.400 nm

SEM image of an MgF_2 inverse opal film at 50.000 × magnification

AFM-Bild eines kolloidalen Kristallfilms von PMMA-Kugeln auf Glass (Partikeldurch-messer 308 nm) und 2D FFT-Bild

TEM image of an MgF₂ inverse opal

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications: up- and down-conversion
- 4. Summary

Up- and down conversion

Mechanism of Luminescence for rare earth metals

O Non-linear optical processes

Up- and down conversion

Why MF₂ (M=Ca, Sr, Ba) as matrix for REM-doping?

- Low phonon energy^[1]
 - **1.** CaF₂ 456 cm⁻¹
 - 2. SrF₂ 366 cm⁻¹
 - **3.** BaF₂ 319 cm⁻¹
- Dust Long life times of exited states
- **\textcircled{0}** Doped CaF₂-phases exhibit high hardnes ^[2]
- Ionen conductivity increases with ionic radia
 - **1.** $Ca^{2+} < Sr^{2+} < Ba^{2+}$ und $Lu^{3+} < ... < La^{3+}$
 - 2. Application in fluoride-ion-batteries ^[3]
 - 3. Application in fluor storage $Me_{1-x}Ln_x^{III}F_{2+x} + \frac{x}{2}F_2 \rightleftharpoons Me_{1-x}Ln_x^{IV}F_{2+2x}$

[1] M. Haase, H. Schäfer, *Angew Chem Int Edit* 2011, 50, 5808-5829.; [2] M. Y. Gryaznov et al. *Crystallogr Rep* 2012, 57, 144-150; [3] C. Rongeat et al. J. Phys.Chem. C 2013, 117, 4943-4950.

Energy transfer – a simple example $Ce^{3+} \rightarrow Tb^{3+}$

Energy transfer – influence of the matrix

 $d(Ce^{3+}-Tb^{3+}) \approx 4 \text{ Å} \rightarrow \text{effective energy transfer}$

Effect of doping rate

Doping series from SrF_2 till SrF_2 :Eu40

- Transparent colloidal solutions till 40 mol% of Eu³⁺ doping
- Linear increase of intensity till 10 mol% Eu³⁺
- No quenching of luminescence increase till 40 mol% Eu³⁺

Photon up-conversion Yb³⁺-Er³⁺

Excitation with continuous 980 nm laser (1 W). Right: schematic representation of the energy transfer between Yb³⁺ and Er^{3+} .

- 1. The *fluorolytic* sol-gel-synthesis of metal fluorides
 - the principle of the *fluorolytic* Sol-Gel-synthesis
- 2. Mechanism/reaction path
 - chemical aspects AIF₃
 - synthesis parameter
- 3. Applications of nanoscopic metal fluorides
- 4. Summary

