
Dynamic	
  Nuclear	
  Polarisa1on	
  –	
  solid	
  state	
  –	
  NMR	
  

technique       –       nACh-Receptor 



Song et al., J. Am. Chem. Soc. 2006, 128, 11385-11390 

Dynamic	
  Nuclear	
  Polariza1on	
  

11.11.16	
   2	
  

thermal	
  equilibrium	
   hyperpolarized	
  

E

B0	
  =	
  0	
   B0	
  ≠	
  0	
  

Polariza1on	
  

B0	
  P	
  	
   T	
  

ε = 40
ε2 =1600

66	
  Days	
  1	
  h	
  

)
kT2
Btanh(

nn
nnP 0!γ=

+
−

= −+

−+



à Structural investigations 
        at picomolar concentration 
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  principle	
  
Polarisation transferred from electron to nuclei of interest 
 

needed:	
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  irradia1on	
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Polarisation transferred from electron to nuclei of interest 
 

transfer from electrons 
to nearby protons 

(the “cross effect”) 

mixture of 60% deuterated glycerol, 30% D2O, 10% H2O  à  provides glass forming matrix 
 
non-glass-forming matrix  à   crystals formed upon freezing   

      à   much lower DNP enhancement 

relayed spin diffusion 
among proton network 

irradiation with 
microwaves 
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(partially) deuterated matrix  à more complete polarization of smaller proton reservoir 

γ1H = 1.00             400 MHz 
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DNP	
  mechanisms:	
  solid	
  +	
  cross	
  effects	
  
…abbreviated	
  SE	
  and	
  CE	
  

ωn 

e1 e2 

ωn 

Δ

Δ

CE: possible when breadth Δ > ωn > δ 

 
2 e-  ßà  1 n     
two paired electrons, EPR frequencies 
separated by Larmor frequency 
 
transition probability can be high at match à 
energy-conserved flip-flop process 

SE: possible when homogeneous linewidth δ 
and breadth of spectrum Δ  <  ωn 
1 e-  ßà  1 n 

‘forbidden transitions’  
(second-order perturbation theory) 
 
transition probability always low 

δ ∼ Δ < ωn 

Δ > ωn > δ 

transition probability scales 
with 1/(ωn)2 = 1/(B0)2 

 

transition probability scales 
with 1/(ωn) = 1/(B0) 

 

EPR absorption line shape 
Δ (breadth of spectrum) ~ δ 
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ωe1 - ωe2 =  ωn  
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2. the CE-conditions are fulfilled and the effective interaction
coefficient DabA!cn=xn

! "
[36,37] induces an anti-crossing

between

jbaabbni¢ jaabbani or jbaabani¡jaababni;

– and MW encounters that occur when;

3. one of the SQ transitions passes through resonance with
the MW field "x1, inducing an anti-crossing between

jbavbvni¢ jaavbvni or jvabbvni¡jvaabvni;

4. one of the DQ or ZQ transitions pass through resonance
with an effective MW field " A!c;n=xn

# $
x1, inducing an

anti-crossing between

ZQ ! jbavbani¢ jaavbbni or jvabbani¡jvaabbni;
DQ ! jbavbbni¢ jaavbani or jvabbbni¡jvaabani:

All these fast passages can occur sequentially during each rotor
period. If we ignore the coherent effects, at each passage some pop-
ulation exchange between the anti-crossing states can modify the
electron’s and nucleus polarization. In order to show how these
fast passages can result in an enhancement of the nuclear
polarization, we realize that for example a type (4) anti-crossing
(DQa) exchanges of population between the states jbabbbni and
jaabbani influencing the population difference between jaabbbni
and jaabbani and thus the nuclear polarization.

As a comparison, in the static CE-DNP case the population ex-
change between jbabbbni and jaabbani is accomplished by a strong
effective MW irradiation field on-resonance on this DQ transition,
while at the same time the jaabbani and jbaabbni states are degen-
erate. These conditions manifest themselves in the MW rotating
frame as a degeneracy between the three states involved in this
process. The occurrence of this condition is rare and occurs only
at a small number of spin systems in a static powder.

The advantage of the MAS-CE-DNP mechanism over the static
case relies on the possibility to have combinations of anti-crossings
that do not involve MW irradiation and therefore do not require
resonance conditions restricting the number of electron pairs in
powders involved in the CE-DNP process. The states involved in
the type (2) anti-crossing are of about equal energies in the labora-
tory frame and a significant population exchange can only occur
when one of the states is depopulated prior to the passage. We
thus expect that the basic MAS-CE-DNP process relies on the com-
bination of at least one of the fast passages, a SQ MW encounter of
type (3) or a dipolar anticrossing of type (1), followed by an anti-
crossing of type (2), as shown in Fig. 5 (this figure will be com-
mented in the next section).

During the time periods between the anti-crossings and MW
encounters the system relaxes according to the relaxation rates
of the system. As in the case of MAS-SE-DNP the dependence of
the steady state polarization on the relaxation parameters and
the interactions is complicated. The electron steady state polariza-
tions are now mainly determined by type (1) and type (3) passages
and by the T1e and T1n relaxation times. The nuclear polarization,
mainly generated by type (2) anticrossings, are thus a sophisti-
cated function of the interaction and relaxation parameters of
these fast passages and their positions in the rotor period with re-
spect to the temporal pathways of the populations. One fact re-
mains clear, namely that T1n should be long enough to maintain
the nuclear polarization. It is thus difficult to quantify the enhance-
ment process and we must rely again on numerical simulations for
the visualization of the fast passage MAS-CE-DNP mechanism.

5.2. Simulations for the {ea # eb # n} spin system

For the simulations we consider a bi-radical type of spin system,
with two electrons with two g-tensors with the same principal val-
ues (gzz,gxx,gyy) = (2.00988,2.00614,2.00194) and a fixed set of Eu-
ler angles Xg,ab = (ag,bg,cg)ab = (102,108,124) (taken from the
average values of TOTAPOL) [38] correlating their principal axis
systems, PASa and PASb. The orientation of the PASa with respect
to the rotor frame is given by the Euler angels Xg,a = (ag,bg,cg)a.
The two electrons are coupled with a maximum dipolar coefficient
Dab = 23 MHz, corresponding to an inter-distance vector of length
1.3 nm and an orientation with respect to PASa defined by the an-
gles (0,bD,cD) = (0,33,45). Furthermore we have chosen for the
hyperfine coefficients the values: Az;cn ¼ 0ðc ¼ a; bÞ;A!an ¼ 3 MHz
and A!bn ¼ 0 MHz. The MW intensity was set at x1/2p ’ 0.85 MHz
and the temperature at T = 100 K. The MW irradiation frequency
used in the simulations was 263.34 GHz, in a field of B0 = 9.394 T.
The characteristic relaxation times were chosen as follows:
T1n = 4 s, T2n = 0.1 ms, T1e = 0.3 ms and T2,e = 1 ls. Again the number
of integration steps has been carefully checked.

As in the SE-DNP case, 70,000 computational time steps were
necessary to reach stable polarization values. However, to prevent
too lengthy computations, the number of steps was reduced so that
the polarization at steady state for each set of parameters differed
by less than 2% from the values obtained with 70,000 steps. In the
CE-DNP case, the number of steps used during the simulations was
dependent on the MAS spinning frequency and was changed
appropriately. The computation time for each single three-spin
system on a standard desktop computer was 23 seconds for

Fig. 5. The time evolutions during one rotor period of the eight instantaneous
rotating frame energies of the eigenstates and the polarizations of a single three-
spin {ea # eb # n} system during MAS-CE-DNP are simulated and presented. During
the simulation the temperature was set at 100 K, the static magnetic field at
B0 = 9.394 T, the MW frequency and intensity were xMW/2p = 263.45 GHz and x1/
2p = 0.85 MHz, respectively, and the MAS frequency was equal to 3 kHz. An
arbitrary orientation of the g-tensor was chosen equal to Xg,a = (131.15,156.6,89.6).
A fixed set of Euler angles Xg,ab = (ag,bg,cg)ab = (102,108,124) (taken from the
average values of TOTAPOL) correlating the principal axis systems, PASa and PASb, of
the g-tensors was used. The central plot shows the time dependence of the energies
in the rotating frame. The fast passages marked in the figure are the dipolar
anticrossings (1), the CE-condition anticrossings (2) and the SQ MW encounters (3).
The effects of these passages on the polarization of electron a (blue), electron b
(black) and the nucleus (red), during the first rotor period after the start of the MW
irradiation, are shown in the plots at the top and bottom. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Cross effect transfer upon rotation 
Varying matching conditions 
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Polarisation build-up in [s] 

• Buildup behavior is   
different for diff. Nuclei 

•   1H < 13C << 15N 

• Deuteration increases 
the τB significantly 
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Channelrhodopsin (ChR)

384 aa, (pdb: 3UG9)


Channelrhodopsin:	
  chromophor	
  configura<on	
  all-­‐trans?	
  	
  
• Mixture of 13cis,15syn and all-trans expected 



standard solid-state MAS NMR 

(DARR, 265 K, ∼ 10 days)


DNP solid-state MAS NMR 

(DARR, 100 K, ε = 9, ∼ 10 hours)
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The	
  fully	
  dark-­‐adapted	
  state	
  of	
  ChR	
  is	
  only	
  all-­‐trans	
  
• Mixture	
  of	
  13cis,15syn	
  and	
  all-­‐trans	
  expected,	
  however,	
  only	
  all-­‐trans	
  observed	
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