

Activation of small molecules

Ethylene and Oxygen

16th December 2016

Elias Frei

Fritz Haber Institute, Inorganic Chemistry Department efrei@fhi-berlin.mpg.de

Literature

- 1. Handbook of Heterogenous Catalysis, G. Ertl, H.
 Knözinger, F. Schüth, J. Weitkamp (2. ed.), Vol 7., 2008
- 2. Industrial Catalytic Processes, C.H. Bartholomew and R.J. Farrauto, Wiley 2006.
- 3. Industrial Organic Chemistry, K. Weissermel, H.-J. Arpe (4. ed), Wiley VCH 2003
- 4. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, S. Ted Oyama, Elsevier, 2008

+ references on the slides

Ethylene Production

- By far the most important organic chemical compound ~ 150 Mio tons/a
- World scale plant 1 Mio t/a (1970: 300 kt/a)
- Ethylene production: Steam Cracker (https://youtu.be/QLmh0jJE2zE)

SOURCE: OGJ and GPCA

http://www.researchandmar kets.com/research/2xl4dr/th e_ethylene The Ethylene Technology Report 2016: 7,000 \$

Ethylene Conversion

Ethylene Oxide Production

- World production capacity ~ 17 Mio tons/a
- Plant size: 400 kt/a
- Ethylene production (60-70 % invest for ethylene):

> 1863 Chlorohydrin process (Wurtz)

> 1931 Direct oxidation with air (Lefort, Union Carbon \rightarrow Dow)

> 1958 Direct oxidation with O_2 (Shell patent)

```
Catalyst: Ag supported on Al<sub>2</sub>O<sub>3</sub> + promotors
```


G. O. Curme: Glycols, Reinhold Publ. Co., New York 1952, pp. 74 – 113. Rebsdat et al., Ullmanns Encycl. Industrial Chemistry, Wiley-VCH **2012**, 547-572

Ethylene Oxide Conversion

http://www.essentialchemicalindustry.org/chemicals/epoxyethane.html

Ethylene + Oxygen

ROBERT E. KENSON AND M. LAPKIN Volume 74, Number 7 April 2, 1970

Important applied methods

- Desorption spectroscopy
- ➢ Raman and IR for the oxygen chemistry (¹⁸O₂ isotope experiments), LEED
- > XPS, EELS and XAS
- Electron microscopy
- Strong Theory support

Activation of Ethylene

- fast adsoprtion /desorption
- low activation barrier (39-46 kJ/mol)

Ag or oxygen?

Increased 13 times on oxidised surfaces

Activation of Oxygen

"A simple reaction network for the activation of oxygen. Hydrogen and an unnamed electron donor are needed. Red denotes the formal oxidation state -1 and blue the oxidation state -2"

Angew. Chem. Int. Ed. 2015, 54, 3465 - 3520

Angew. Chem. internat. Edit. Vol. 13 (1974), No.1

Activation of Oxygen: dissociative?

Molecular or atomic oxygen for EO?

Molecular oxygen: O_{2.s}

A similar conclusion regarding the nondissociative nature of oxygen on silver was reached by Herzog [98], who reacted ethylene with oxygen and nitrous oxide over silver catalysts. Although significant yields of ethylene oxide were obtained with oxygen, the use of nitrous oxide only produced CO_2 and H_2O except at higher temperatures where molecular oxygen is known to be produced due to the catalytic decomposition of nitrous oxide [99]:

$$N_2O \longrightarrow N_2 + O(ads)$$
 (5)

$$N_2O + O(ads) \longrightarrow N_2 + O_2$$
 (6)

Partial Oxidation Total Oxidation Electrophilic

Kilty PA, Sachtler WMH (1974) Catal Rev Sci Eng 10:1–16

C₂H₄O

atomic oxygen: O_s

 $C_2H_4 + O_2$

Adsorption of EO on Ag? Isomerization!

ROBERT E. KENSON AND M. LAPKIN Volume 74, Number 7 April 2, 1970

Molecular or atomic oxygen for EO?

If only molecular oxygen, selectivity limited to 87.5 % (6/7)!

$7C_2H_4+6O_2\rightarrow 6(C_2H_4)O+2CO_2+2H_2O$

Atomic oxygen is involved!

JOURNAL OF CATALYSIS 98, 530-539 (1986)

Which kind of oxygen species exist? electr. nucl.

Which kind of oxygen speciesAmount of Ag^{5+} exist?

• What about dynamics?

20

O Species (%)

Let's conclude: A complex situation?

- Atomic and molacular oxygen is involved
- 4 to 5 different oxygen species which co-exist: nucleophlic + electrophilic
- Competing product formation: Acetaldehyde or EO / Isomerization
- Surface dynamic
- No uniform mechanism

Let's conclude: A complex situation?

To cite this article: P. A. Kilty & W. M. H. Sachtler (1974) THE MECHANISM OF THE SELECTIVE OXIDATION OF ETHYLENE TO ETHYLENE OXIDE, Catalysis Reviews, 10:1, 1-16, DOI: <u>10.1080/01614947408079624</u>

Stacchiola D, Wu G, Kaltchev M, Tysoe WT (2001) Surf Sci 486:9–23

Linic S, Medlin JW, Barteau MA (2002) Langmuir 18:5197–5204

Linic S, Barteau MA (2001) J Am Chem Soc 124:310–317

Oxametallacycle: What experimental evidence? 0.9 0.8 Selectivity to EO

Figure 2. TPD spectra following a 250 K dose of EO on Ag(111).

b) molecularly adsorbed EO c) Ring closure to OMC in line with DFT prediction

Linic S, Barteau MA (2001) J Am Chem Soc 124:310–317

0.5

Fraction of Saturation Coverage

0.7

0.6

0.5

0.4

0.3

Figure 4. HREEL spectra collected after exposing EO to Ag(111) at varying dose temperatures. (a) 110 K; (b) 140 K; (c) 250 K.

Oxametallacycle: Langmuir-Hinshelwood mechanism

common intermediate

Product selectivity depends on the relative barriers:

$$E_{a,EO}$$
 vs. $E_{a,AA}$

Ozbek MO, Onal I, Santen RA (2012) Top Catal 55:710–717

Atomic or moleular oxygen: dissociation barrier coverage dependend!

Ethylene pre-adsorbed reduces the barrier to 0.5 eV!

With nucleophilic oxygen direct combustion?

Epoxidation by O_{nuc}

Co-feed with ethylene chloride: promtor and/or co-catalyst

0.3 mbar, 230 °C, C₂H₄:O₂= 1:2

EC:

- oxygen management
- blocks active/unselectice Ag-sites
- too much EC: Poisening!

0.3 mbar, 230 °C, $C_2H_4:O_2=1:2$ + pulsing with EC

Co-feed with ethylene chloride: promtor and/or co-catalyst

- **Ethylene chloride effects:**
- oxygen management on the surface + in the bulk!
- blocks active/unselectice Ag-sites
- prevents surface from reconstruction
- weakens the Ag-O bond, easier oxygen-transfer
- EC dosing + promoters has a strong impact on S(EO)
- too much EC: Poisening!

Ozbek MO, Onal I, Santen RAV (2011) J Phys Condens Matter 23:404202

Campbell CT (1986) J Catal 99:28–38

Co-feed with ethylene chloride: promtor and/or co-catalyst

The EO catalyst: Support + particle size

Ag particle size on supported catalysts

Arrows show increase in catalyst productivity with Ag particle size until a maximum is reached.

• Almost no selectivity observed for particles < 2nm^[4]

PhD-Proposal: M. Lamoth

• Particles < 10 nm are "known to exhibit no catalytic acitivty"[8]

[4] Wu and Harriott, J. Catal. 1975, 39, 395-402 [5] Verykios et al., J. Catal. 1980, 66, 368-382 [6] Lee et al., Appl. Catal. 1989, 50, 17 [7] Tsybulya et al., J. Catal. 1995, 154, 194-200 [8] Goncharova et al., Appl. Catal. A 1995, 126, 67-84 [9] Bukhtiyarov et al., J. Chem. Faraday Trans. 1997, 93, 2323-2329

The EO catalyst: Support + particle size

Active supports

Oxides (TiO₂, Fe₂O₃, MgO, ZrO₂, FeTiO₃, CaTiO₃, SrTiO₃) Zeolites (alumosilicates) Transition-aluminas Silicas Silicas (-titania, -alumina) Carbonates (CaCO₃)

The EO catalyst: Support + particle size

Active supports

Inert supports

Siral 20 / 5 wt. Ag / calcined @ 500 °C

 $\alpha\text{-Al}_2\text{O}_3$ / 5 wt. Ag / calcined @ 500 °C

Masterthesis M. Lamoth

The EO catalyst: Perspectives!

$\Delta \Delta EA = (\Delta E_{TS2}(alloy) - \Delta E_{TS1}(alloy)) - (\Delta E_{TS2}(Ag) \Delta E_{TS1}(Ag))$

nature chemistry | VOL 1 | APRIL 2009 | www.nature.com/naturechemistry

Linic, S., Jankowiak, J. & Barteau, M. A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles.J. Catal. 224,489–493 (2004).

Conclusion

- The ethylene epoxidation is an important industrial process via direct ox.
- The industrial catalysts is a Ag@α-Al₂O₃+promoters₁ Li, Cs, W, S, Re
- The O₂-Ag chemistry is challenging and dynamic: nucl./electr./sub-surf.
- Molecular and atomic oxygen form EO
- The OMC is the most probable common intermediat + LH-mechanism
- The selectivity is strongly T and coverage dependent
- EC is an important co-feed and co-catalyst for the industrial process:

electronic + structural impact

Not discussed: Carbon (sub-surface), sulfur/sulfate promotion, Catalyst synthesis etc.