Adsorption

Hajo Freund Fritz Haber Institute of the Max Planck Society Faradayweg 4-6, 14195 Berlin

Program

- Thermodynamics
- Dynamics
- Electronic Structure

Adsorption

Ideal Gas Theory

number of molecules colliding with a unit surface area:

$$F_i'' = \frac{P_i}{\sqrt{2\pi m_A k_B T}}$$

 P_i : pressure of species:

$$r_A = F_i^{"}\sigma$$

 $\boldsymbol{\sigma}\!\!:\!$ sticking coefficient

molecules per unit surface and per unit time

$$r_A = F_i^{"} \sigma^0(T) f(\theta) = \frac{P_i \sigma^0(T) f(\theta)}{\sqrt{2\pi m_A k_B T}}$$

rate constant:

$$k_{A} = \frac{\sigma^{0}(T)}{\sqrt{2\pi m_{A}k_{B}T}}$$

 $0 \le \sigma^0(T) \le 1$ unit: per pascal per cm² per second

Surface Coverage

Experimental Setup

Adsorption Isotherm

Clausius-Clapeyron

Assumption: adsorbate phase in equilibrium with the gas-phase and switching to partial molecular quantities

$$\left(\frac{\partial \ln P}{\partial T}\right) = \frac{\left(S_g - S_s\right)}{RT} = \frac{\left(h_g - h_s\right)}{RT^2} = -\frac{\Delta h_{ads}}{RT^2} \qquad \Theta = \frac{n_s}{n_a} \qquad \tilde{v}_s =$$

$$\tilde{v}_{s} = \left(\frac{\partial v}{\partial n_{s}}\right)_{T,P,n_{a}}$$

lea

leads to:

$$\left(\frac{\partial \ln P}{\partial T}\right)_{\Theta} = \frac{\left(S_g - \tilde{S}_s\right)}{RT} = \frac{\left(h_g - \tilde{h}_s\right)}{RT^2} = \frac{-q_{st}}{RT^2}$$

$$\frac{dP}{P} = \left(\frac{-q_{st}}{RT^2}\right) dT$$
Integration leads to:

$$\ln\left(\frac{P_1}{P_2}\right) = \frac{q_{st}}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Isosteric Heat of Adsorption

Xe/Ni(100)

K. Christmann, J.E. Demuth, Surf. Sci. 1982, 120, 291

Heats of Adsorption (Evaporated Films)

Calorimeter (after Wedler)

G. Wedler, H. Strothenk, Ber. Bunsenges. Phys. Chem. 1966, 70, 214; C. Pluntke, G. Wedler, G. Rau, Surf. Sci. 1983, 134, 145

Heat of Adsorption (Single Crystal)

Microcalorimetry

J.T. Stuckless, N.A. Frei, C.T. Campbell, Rev. Sci. Inst. 1998, 69, 2427

B.N.J. Persson, Surf. Sci. 1991, 258, 451

Adsorption Isotherm

after Langmuir

Adsorption rate:
$$r_{ad} = \frac{d\sigma_s}{dt} = \frac{P}{\sqrt{2\pi m kT}} s_o f(\sigma_s)$$

 $f(\pmb{\sigma}_{s})$ accounts for the loss of empty sites

 $s_o = s \exp\left(-\frac{ads}{kT}\right)$

Sticking depents on many factors:

 $s(v, E_e, T) = \sum_{v} F_B(v, T) s_a(v, E_e)$

 E_e is the effective translation energy.

$$E_e = E_i \cos^n(\vartheta_i)$$

Assumptions: each particle one site no interaction

$$r_{ad}(\Theta) = \frac{d\Theta}{dt} = \frac{P}{\sqrt{2\pi m kT}} s_o f(\Theta)$$

$$f(\Theta)$$
 : associate adsorption: $(1 - \Theta)$
: dissociate adsorption: $(1 - \Theta)^2$

 $r_{ad} = r_{des}$

with

$$b(T) = \frac{{}^{o}s}{\upsilon\sqrt{2\pi mkT}} \exp\left(-\frac{{}^{ads}E_{act}-{}^{des}E_{act}}{kT}\right)$$

Adsorption Isotherms

after Langmuir

Thermal Desorption Spectrocopy

Experimental Setups

Thermal Desorption Spectrocopy

Data Evaluation

D.A. King, Surf. Sci. 1975, 47, 384

Enthalpies of Adsorption

Adsorbate	Substrate	<i>q</i> (kJmo1⁻)		Remarks	Adsorbate	Substrate	<i>q</i> (kJmo1⁻)		Remarks
CO	Ni(111)	111	(±5)	WF <u>[1]</u>		Fe(111)	100		(not dissociative)
		130		Microcalorimetry	CO/K	Ni(100)	190		Microcalorimetry
	Ni(100)	125	(0±5)	WF	CO ₂	Fe	300		195 K (dissociative)
		115		TDS[2]	H ₂	Ni(100)	96.3	(±5)	WF
		119		TDS		Ni(110)	90.0	(±5)	WF
		138		TDS		Ni(111)	96.3	(±5)	WF
		109		isosteric E _{ad}			85	(±5)	
		123		isosteric E _{ad}		Ni	75176		
		130		isosteric E _{ad}		Pd(111)	88	(±5)	WF
		134		isosteric E _{ad}		Pd(110)	103	(±5)	WF
		123		Microcalorimetry		Pd(100)	102	(±5)	WF
	Ni(110)	133		Microcalorimetry		Rh(110)	92	(±5)	WF, TDS
	Pd(100)	150	(±5)	WF		Ru(10 <u>1</u> 0)	80	(±5)	
		161	(±8)	WF, TDS, LEED		Co(10 <u>1</u> 0)	80	(±5)	
	Pd(111)	142	(±3)	WF		Та	188.1		
	Ru(0001)	160	(±10)	WF		W	188.1		
	Ru(10 <u>1</u> 0)	157	(±10)	Contact-pot., TDS		Cr	188.1		
	Cu(106)	58	(±10)	WF		Fe	133.8		
	Fe(111)	325		273 K (dissociative)		Fe	100		dissociative (273 K)
	Fe(111)	200		195 K (partially diss.)		Fe	97	(±3)	

[1] WF, work function; [2] TDS, thermal desorption spectroscopy

Enthalpies of Adsorption

Adsorbate	Substrate	<i>q</i> (kJmo1⁻)		Remarks
	Pd	80/96		
Na	W	133.8		
Cs		267.5		
0	Ni(100)	532	(±5)	IR (300K)
	Pd	80/96		
		≈ 432		IR (100 K)
		532	(±5)	
	Ni(I11)	470	(±15)	
	Ni(110)	498	(±5)	
O ₂ /CO	Fe(111)	490		273 K

Heats of Adsorption

CO on Transition Metal Surfaces

K. Christmann, *Introduction to Surface Physical Chemistry*, Topics in Physical Chemistry, Vol. 1, Steinkopff Verlag, Darmstadt, **1991**;

R.J. Behm, K. Christmann, G. Ertl, M.A. van Hove, *J. Chem. Phys.* **1980**, 73, 2984;

K. Christmann, O. Schober, G. Ertl, M. Neumann, *J. Chem. Phys.* **1974**, *60*, 4528

Adsorption under UHV Conditions

LEED Studies

T. Tüshaus, W. Berndt, H. Conrad, A.M. Bradshaw, B. Persson, Appl. Phys. A 1990, 51, 91

Model Potentials

One Dimensional

J.E. Lennard-Jones, Trans. Faraday Soc. 1932, 28, 333

Model Potentials

Two Dimensional

D.A. King, M.G. Wells, Surf. Sci. 1972, 29, 454

Initial Sticking Coefficients

Adsorbate	Substrate	Sticking coefficient	Remarks
Н	Ni(100)	0.06	
	Ni(1 11)	≥ 0.01	
	Ni(110)	≈ 1	
		0.96	
	Pt(111)	0.1	
		≤ 0.0001	
	Rh(1 10)	≈ 1	
	Ru(10_1 0)	≈ 1	
	Co(10_1 0)	0.75 (±20%)	
	W(100)	1	
0	Cu(100)	0.03	300 K
	Ni(100)	1	
	Pt(111)	0.2	
СО	Ni(111)	1	
	Ni(110)	0.89	

Adsorbate	Substrate	Sticking coefficient	Remarks
	Pd(100)	0.6	
	Pd(111)	0.96	
	Ru(10 <u>1</u> 0)	1	
	Pt(111)	1	
2	W(100)	0.2-0.6	
	W(110)	1-5x10 ⁻³	β-N ₂
		0.22	γ-N _z
	W(111)	0.08	
N ₂	Fe(100)	10 ⁻⁶ -10 ⁻⁷	
	Fe(111)	10 ⁻⁶ -10 ⁻⁷	
	Fe(1 11) > (100) > (110)	10 ⁻⁶ -10 ⁻⁸	

Adsorption of oriented Molecules

Experimental Setup

Photoemission

Principles

$$\hbar\omega = E_{kin} - E_B$$

Electronic Structure

Photoelectron Spectroscopy

Ordered Adsorbate Layers

Formation of Two-dimensional Band-structures

Photoemission

Principle of Bandstructure Measurement

Angle resolved photoemimon

$$\vec{p} = \vec{p}_{11} + \vec{p}_{\perp}; \quad \vec{p}_{11} = |\vec{p}| \cdot \sin\theta$$

$$\vec{E}_{Kin} = \frac{p^2}{2m}$$

$$\vec{p} = t_1 \vec{k}$$

$$k_{11} = \left(\frac{m}{t_1^2} \cdot E_{Kin}\right)^{1/2} \cdot \sin\theta$$

$$k_{11} = \left(\frac{m}{t_1^2} \cdot E_{Kin}\right)^{1/2} \cdot \sin\theta$$

$$k_{11} = \left(\frac{m}{t_1^2} \cdot E_{Kin}\right)^{1/2} \cdot \sin\theta$$

Intermolecular Interaction at Surfaces

Two-dimensional band structure COp_{2mg}/Ni(110)

H. Kuhlenbeck, H.B. Saalfeld, U. Buskotte, M. Neumann, H.J. Freund, E.W. Plummer, *Phys. Rev. B* **1989**, *39*, 3475;

N. Memmel, G. Rangelov, E. Bertel, V. Dose, K. Kometer, N. Roesch, *Phys. Rev. Lett.* **1989**, *63*, 1884

Determination of Adsorption Size

Vibrational Spectroscopy CO/Ni(111)

L. Surnev, Z. Xu, J.T. Yates, Surf. Sci. 1988, 201, 1

Surface Structure

bcc(hkl)

Model Potential

N₂/Fe(111)

M. Grunze, M. Golze, W. Hirschwald, H.J. Freund, H. Pulm, U. Seip, M.C. Tsai, G. Ertl, J. Kuppers, *Phys. Rev. Lett.* **1984**, *53*, 85;

M.C. Tsai, U. Seip, I.C. Bassignana, J. Kuppers, G. Ertl, *Surf. Sci.* **1985**, *155*, 387.

L.J. Whitman, C.E. Bartosch, W. Ho, G. Strasser, M. Grunze, *Phys. Rev. Lett.* **1986**, 56, 1984.

D. Tomanek, K.H. Bennemann, *Phys. Rev. B* **1985**, *31*, 2488

Vibrational Spectroscopy (EELS)

N₂/Fe(111)

L.J. Whitman, C.E. Bartosch, W. Ho, G. Strasser, M. Grunze, Phys. Rev. Lett. 1986, 56, 1984

Thermonuclear Interaction

CO in Gas-phase and on Surface

J.C. Tracy, P.W. Palmberg, J. Chem. Phys. 1969, 51, 4852

Stability of Oxide Surfaces

Electrostatic Considerations

P.W. Tasker, *Philos. Mag. A* **1979**, 39, 119; P.W. Tasker, *J. Phys. C: Solid State Phys.* **1978**, 12, 4977

Oxide Surface Structure

Energy in AO(nkl) surfaces

H.-J. Freund, Faraday Discuss. 114 (1999)

Stability of Oxide Surfaces

Corundum Type Surfaces

Oxide Surface Structure

Reconstruction of AO(111)

H.-J. Freund, Faraday Discuss. 114 (1999)

Oxide Surface Preparation

Single Crystal vs. Thin Films

F. Rohr, K. Wirth, J. Libuda, D. Cappus, M. Bäumer, H.-J. Freund, *Surf. Sci.* **1994**, *315*, L977;

D. Cappus, M. Haßel, E. Neuhaus, M. Heber, F. Rohr, H.-J. Freund, *Surf. Sci.* **1995**, 337, 268

CO/NiO(100)

TDS comparison between bulk single crystals and thin films

H.-J. Freund, Faraday Discuss. 114 (1999)

CO/NiO(100)

TDS coverage dependence

H.-J. Freund, Faraday Discuss. 114 (1999)

CO/Ni(100) vs. CO/NiO(100)

Bonding characteristics

H.-J. Freund, Faraday Discuss. 114 (1999)

CO/NiO(100)

Comparison with CO/Ni(100) and free CO

D. Cappus et al, Surf. Sci. 325 (1995)

CO/NiO(100)

Angular dependent NEXAFS

D. Cappus et al, Surf. Sci. **325** (1995)

H.-J. Freund et al., Reports on Progress in Physics, 59 (1996)

Electron Scattering

Loss Mechanisms

CO/NiO(100)

EELS/SPEELS

H.-J. Freund, Faraday Discuss. 114 (1999)

Photoemission

NiO(100) and NO/NIO(100)

H. Kuhlenbeck et al., Phys. Rev. B 43 (1991), 1969

Photoelectron Diffraction

Schematic and Scattering factors

Photoelectron Diffraction

NO/NiO(100)

Parameter	Value
r _{nin} (Å)	1.88 ± 0.02
Θ ₁ (°)	+3 / -8
r _{NO} (Å)	1.12+*/-0.15
Θ ₂ (°)	59 + 31/-17**
D ₁₂ (Å)	2.07 ± 0.04
	(1.8 + 4.2/-1.8) x 10 ⁻²
	(3.8 ± 1.9) x 10 ⁻³

R. Lindsay et al., Surf. Sci. 425 (1999), L401

Work Function Changes

Alkali Adsorption

M. Kiskinova, G. Pirug, H.P. Bonzel, Surf. Sci. 1983, 133, 321

Thermal Adsorption Spectra

K/Pt(111) as a Function of K Coverage

L.J. Whitman, W. Ho, J. Chem. Phys. 1989, 90, 6018

Alkali-molecule Interactions at Surfaces

CO/K/Pt(111) EELS

J.E. Crowell, E.L. Garfunkel, G.A. Somorjai, Surf. Sci. 1982, 121, 303

H.-J. Freund, Faraday Discuss. 114 (1999)

Photoemission

CO/Rh/ alumina Size Dependence

H.-J. Freund, Faraday Discuss. 114 (1999)

Microcalorimetry

CO/Pd/ ironoxide Size Dependence

. M. Flores-Camacho, J.-H. Fischer-Wolfarth, M. Peter, C. T. Campbell, S. Schauermann, HJF; PhysChemChemPhys 13, 16800 (2011) 55