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1. Basic principles 

 Electron paramagnetic resonance (EPR) = Electron spin resonance (ESR) 
spectroscopy 

 Same underlying physical principles as in nuclear magnetic resonance (NMR) 

One unpaired (free) electron: 

Zeeman effect: 
 

∆𝑈 = 𝑔𝛽𝑒𝐵 

𝑔 =
ℎ𝜈

𝛽𝑒𝐵
 

(resonance condition) 

g: g factor 
for free electron: ge= 2.0023 
be: Bohr magneton 

Selection rule: DMs=±1 
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1. Basic principles 

 A continuous wave (cw) EPR spectrometer: 
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1. Basic principles 
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1. Basic principles 

 The EPR resonator (cavity) 

Rectangular TE102 cavity 

Electric field: 

Magnetic field: 
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1. Basic principles 

 Typical frequency and magnetic induction ranges in EPR 
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1. Basic principles 

 (Phase) Sensitive detection by field modulation 
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1. Basic principles 

 Samples that can be principally measured by EPR: 

 Free radicals in solids, liquids or in the gas phase 

 Transition metal ions with unpaired electron(s) 

 Point defects in solids 

 Systems with more than one unpaired electrons, e.g. triplet systems, 

biradicals, multiradicals 

 Systems that temporarily generate states with unpaired electrons by 

excitation with, e.g., light 

 Systems with conducting electrons 
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2. Electron-Nucleus Interactions 
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2. Electron-Nucleus Interactions 

Example: Hydrogen atom 
 One unpaired electron  electron spin S = ½  

2 lines??? 

1 transition 
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2. Electron-Nucleus Interactions 

Example: Hydrogen atom 
 One unpaired electron  electron spin S = ½  
 H atom has a nuclear spin: I = ½, MI = ±½    

Selection rule: DMS = ±1; DMI = 0  

DMI allowed: 

DMI forbidden: 

Hyperfine 
interaction 

Hyperfine interaction 
A0 

ℎ𝜈 = 𝑔𝛽𝑒𝐵 ± 1/2A0 
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2. Electron-Nucleus Interactions 

Example: Deuterium atom 
 One unpaired electron  electron spin S = ½  
 Nuclear spin: I = 1, MI = -1, 0, +1    

Selection rule: DMS = ±1; DMI = 0  

In general for single nucleus with spin I interacting with one electron: 2I+1 lines of 
equal intensity, separated by hyperfine splitting A0 

A0 

A0 

A0/2 

A0/2 
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2. Electron-Nucleus Interactions 

Interaction of multiple nuclei with one electron 
 One unpaired electron  electron spin S = ½  
 Two equivalent nuclei with I = ½, MI = -½, +½   

Selection rule: DMS = ±1; DMI = 0  

A0 A0 
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2. Electron-Nucleus Interactions 

Interaction of multiple nuclei with one electron 
 One unpaired electron  electron spin S = ½  
 n equivalent nuclei with 

In general for n equivalent nuclei with spin I interacting with one electron: 2nI+1 lines with 
multinomial intensity ratios (“Pascal`s triangle“), separated by hyperfine splitting A0 
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2. Electron-Nucleus Interactions 

Interaction of multiple nuclei with one electron 
 One unpaired electron  electron spin S = ½  
 n equivalent nuclei with I = ½  

n = 1  

n = 2  

n = 3  

n = 4  

n = 5  

n = 6  

n = 7  

n = 8  

2nI+1 
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2. Electron-Nucleus Interactions 

Interaction of multiple nuclei with one electron 
 One unpaired electron  electron spin S = ½  
 Two inequivalent nuclei with I = ½  

. 
HO-C-COOH 

H 
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2. Electron-Nucleus Interactions 
EPR spectrum of V2O5 single crystal 
 One unpaired electron  electron spin S = ½ (V4+ defect)  
 n (?) equivalent nuclei with I = 7/2  

Number of lines = 2nI+1 = 2x2x7/2+1 = 15 equally spaced lines with intensity distribution 

Conclusion: 
electron localized 
at two vanadium 
atoms 

𝑔∥ =
ℎ𝜈

𝛽𝑒𝐵
= 1.911 

𝐴∥ = 88 G 

B/G 

𝐵 ∥ b 

Orthorhombic space group: 
a=3.564(2) Å b=11.519(6) Å 
c=4.373(2) Å 

𝐴⊥ = 33 G 

𝑔⊥ = 1.983 

𝐵 ∥ c 

1   :  2   :  3   :  4   :  5   :  6  :  7  :  8  :  7  :  6  :  5  :  4   :  3   :  2   :  1 
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3. Anisotropy 
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3. Anisotropy 

 Cubic symmetry (cubal, octahedral, tetrahedral coordination) 
 

 (Uni)Axial Symmetry 
 

 Orthorhombic Symmetry 
 
 
 
 
 

 Cubic Symmetry:  

Electron in environment with: 

ℋ = 𝛽𝑒 𝑔𝑥𝐵𝑥𝑆 𝑥 + 𝑔𝑦𝐵𝑦𝑆 𝑦 + 𝑔𝑧𝐵𝑧𝑆 𝑧 = 𝛽𝑒[𝐵𝑥 𝐵𝑦 𝐵𝑧] ∙

𝑔𝑥 0 0
0 𝑔𝑦 0

0 0 𝑔𝑧

∙

𝑆 𝑥
𝑆 𝑦

𝑆 𝑧

= 𝛽𝑒𝐁T ∙ 𝑔 ∙ 𝐒  

Spin Hamiltonian: 

𝑔𝑥 = 𝑔𝑦 = 𝑔𝑧 
Isotropic g factor (independent on 
magnetic field direction): 
 
 g is a scalar constant 

F center in NaCl: 

z 

x 
y 

ℋ = 𝛽𝑒𝑔(𝐵𝑥𝑆 𝑥 + 𝐵𝑦𝑆 𝑦 + 𝐵𝑧𝑆 𝑧) 

Row vector 

square matrix 

column 
vector 
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3. Anisotropy 

 (Uni)Axial Symmetry 
 

ℋ = 𝛽𝑒(𝑔𝑥𝐵𝑥𝑆 𝑥 + 𝑔𝑦𝐵𝑦𝑆 𝑦 + 𝑔𝑧𝐵𝑧𝑆 𝑧) 

      = 𝛽𝑒[𝑔⊥(𝐵𝑥𝑆 𝑥 + 𝐵𝑦𝑆 𝑦) + 𝑔∥𝐵𝑧𝑆 𝑧] 

 

Spin Hamiltonian: 

𝑔𝑥 = 𝑔𝑦 = 𝑔⊥ ≠ 𝑔𝑧 = 𝑔∥ 
Anisotropic g factor (dependent on 
magnetic field direction): 

V- center in MgO 

𝑔⊥ 

𝑔∥ 𝑔∥ 

z 

x 
y 

𝐵 ∥ 𝑧 𝐵 ∥ 𝑧 𝐵 ⊥ 𝑧 
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3. Anisotropy 

 Orthorhombic Symmetry 
 

ℋ = 𝛽𝑒(𝑔𝑥𝐵𝑥𝑆 𝑥 + 𝑔𝑦𝐵𝑦𝑆 𝑦 + 𝑔𝑧𝐵𝑧𝑆 𝑧) 

 

Spin Hamiltonian: 

𝑔𝑥 ≠ 𝑔𝑦 ≠ 𝑔𝑧 

Anisotropic g factor (dependent on 
magnetic field direction): 

O2
- on MgO 

MgO 

P. Schwach 
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3. Anisotropy 

 Crystalline powders: principal axis has all possible orientations relative to the 
direction of the magnetic field 
 

B 

V- center in MgO 
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3. Anisotropy 
 Crystalline powder 
 S = ½, I = 0 
 Uniaxial local symmetry 

 

First derivative 

𝜃: Angle between 
magnetic field and 
principal symmetry 
axis of any spin 
system in the 
sample 

dA= 

Fraction of symmetry axes 
between q and q +dq 

𝑃 𝜃 d𝜃 =
𝑑𝐴

𝐴𝑠𝑝ℎ𝑒𝑟𝑒
~𝑃 𝐵 d𝐵 

 
 

𝑃 𝜃 d𝜃 =
𝑑𝐴

4𝜋𝑟2 =
1

2
𝑠𝑖𝑛𝜃d𝜃 

Probability of a spin system 
experiencing a resonant 
field between B and B+dB 
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3. Anisotropy 

 Crystalline powder 
 S = ½, I = 0 
 Orthorhombic local symmetry 

 

First derivative 
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3. Anisotropy 

 Crystalline powder 
 S = ½, I = ½  
 Hyperfine anisotropy 

 

Isotropic g factor 
𝑎𝑧 > 𝑎𝑦 > 𝑎𝑥 

Uniaxial symmetry 
𝑔∥ < 𝑔⊥; 𝑎∥ > 𝑎⊥ 

Isotropic hyperfine splitting 
𝑔𝑧 > 𝑔𝑦 > 𝑔𝑥 
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3. Anisotropy 

 MgO: H+/O2
- 

 S = ½, I (H) = ½  
 Orthorhombic:  

 

MgO 

P. Schwach 
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4. Electron-Electron Interactions 
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4. Electron-Electron Interactions 

 E.g. O2, V3+, Ni2+, Fe3+ 

 Electron exchange interaction  
 

Singlet Triplet Triplet 
ground state 

Stabilization by 
exchange interaction 

Intersystem 
crossing 

Singulet state 

Triplet state 

Isotropic field: 
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4. Electron-Electron Interactions 

 Electron-electron dipole interaction 
 ℋ = 𝑔𝛽𝑒(𝐵𝑥𝑆 𝑥 + 𝐵𝑦𝑆 𝑦 + 𝐵𝑧𝑆 𝑧) Only Zeeman effect (S = ½, isotropic g factor, I = 0): 

With electron-electron dipole (anisotropic) interaction (fine coupling) (S = 1, isotropic g factor, I = 0): 

ℋ = 𝑔𝛽𝑒 𝐵𝑥𝑆 𝑥 + 𝐵𝑦𝑆 𝑦 + 𝐵𝑧𝑆 𝑧 + 𝐷𝑥𝑆 𝑥
2

+ 𝐷𝑦𝑆 𝑦
2

+ 𝐷𝑧𝑆 𝑧
2

 

ℋ = 𝑔𝛽𝑒𝐁T ∙ 𝐒 + 𝐷(𝑆 𝑧
2

−
1

3
𝑆 2) + 𝐸(𝑆 𝑥

2
− 𝑆 𝑦

2
) 

e.g. E = 0 

Zero-field splitting 
Δ𝑀𝑆 = ±1 

Δ𝑀𝑆 = ±1 

In cubic coordinations: D = E = 0 



31/43 

4. Electron-Electron Interactions 

 Electron-electron dipole interaction 
 With electron-electron dipole interaction (fine coupling) (S = 1, isotropic g factor, I = 0): 

ℋ = 𝑔𝛽𝑒𝐁T ∙ 𝐒 + 𝐷(𝑆 𝑧
2

−
1

3
𝑆 2 + 𝐸(𝑆 𝑥

2
− 𝑆 𝑦

2
) 

In cubic coordinations: D = E = 0 

? 
For high spin systems, e.g. Fe3+: S = 5/2 

Second order term ~S2 

a: Fourth-order (high spin) parameter 
for cubic coordination 

Fe3+ in cubic 
coordination 
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4. Electron-Electron Interactions 

 Electron-electron dipole interaction 
 With electron-electron dipole interaction (fine coupling) (S = 5/2, isotropic g factor, I = 0): 

a 

Single crystal d5 ion in octahedral (cubic) crystal field with B parallel to principal axis 

For (uni)axial symmetries: Axial 
fourth-order parameter F 
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 The complete (simplified) Spin Hamiltonian  

ℋ = 𝑔𝛽𝑒𝐁T ∙ 𝐒 + 𝐒 T ∙ 𝐃 ∙ 𝐒 + 𝐒 T ∙ 𝐀 ∙ 𝐈  

Zeeman splitting: g tensor 

Fine coupling (high spin 
electron-electron 
interactions): D, E, a, F 

Nuclear hyperfine 
coupling (electron-
nucleus 
interactions):  A 
tensor 
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Mn 
Sys1.S = 5/2; 
Sys1.g = 2.0007; 
Sys1.Nucs = '55Mn'; 
Sys1.A = -244; 
Sys1.AStrain = 0; 
Sys1.aF = [60 0]; 
Sys1.lwpp = 0.1; 
Sys1.D = 90; 
Sys1.DStrain = 120; 
Sys1.weight = 100; 
  
Fe 
Sys2.S = 5/2; 
Sys2.g = 2.0027;  % isotropic g 
Sys2.lwpp = [0.5 0.0]; % Gaussian, Lorentzian peak to peak 
width, mT 
Zero-field splitting in terms of D and E 
Sys2.D = [120 0]; %in MHz 
Sys2.DStrain = [600 0]; 
Sys2.aF=[650 0]; 
Sys2.aFStrain = [0 0] 
Sys2.weight=16000 
  
Cr 
Sys3.S=3/2; 
Sys3.g=1.98; 
Sys3.Nucs='Cr'; 
Sys3.A=3; 
Sys3.lwpp=0.2; 
Sys3.weight=5; 

Fe3+, Mn2+, Cr3+ in MgO 

Spectrum Simulation with EasySpin®  
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5. Linewidths 
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5. Linewidths 

 Spin relaxation: spin-lattice relaxation time t1 (spin interaction with 
surroundings, longitudinal relaxation time) 
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5. Linewidths 

 Spin relaxation: spin-spin relaxation time t2 (spin spin interaction, transversal 
relaxation time) M precesses about B0 with 

angular frequency 
𝜔𝐿 = −𝛾𝑒𝐁0  (Larmor 
frequency) 

𝜔𝐿 

Longitudinal magnetization 
Mz = const. 

Transversal Mx, Mz oscillate, no 
net transversal magnetization 

Frame rotates with the 
angular frequency w   

Superposition of a 
rotating perpendicular 
field B1 

B1 

y 

x 

Net transversal 
magnetization (all spins 
rotate in phase with w) 

Mxy 

y 

x 

Transversal magnetization 
decays with t2   

𝜔 

Mz 

𝑀𝑥𝑦 = 𝑀𝑥𝑦(0)𝑒−𝑡/𝜏2  

At resonance:   𝜔 = 𝜔𝐿 
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5. Linewidths 

 Linewidths: homogeneous broadening by t1 and t2 

Lorentzian line shape 

Γ =
1

𝛾𝑒 𝜏2
(1 + 𝛾𝑒

2𝐵1
2𝜏1𝜏2)1/2≈

1

𝛾𝑒 𝜏2
 

𝐵 
𝐵𝑟  

Half width at half height: 

Usually: t1 >> t2  
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5. Linewidths 

 Linewidths: inhomogeneous broadening by superposition of spectra from 
individual equivalent spins 

Gaussian(-Lorentzian) line shape 

Caused by 
• An inhomogenous external magnetic field 
• Unresolved hyperfine structure 
• Anisotropic interactions 
• Dipolar interactions 

B 
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5. Linewidths 

 Example for line broadening: electron-spin exchange 

(t-Bu)2NO 
. 

in EtOH 10-4 M 

10-2 M 

10-1 M 

pure liquid 

14N: I = 1  M = 2I+1 = 3 (Triplet) 

exchange-narrowed 

N N N N 

Exchange of spin orientations 
between two nuclei 
 Decreases interaction time t 
between (same) nuclear and 
electron spin state 

𝑘exchange =
1

2𝜏[conc. ]
 

At high concentrations t  can 
become so small, that the 
time-averaged hyperfine 
field is close to zero and hfs 
coalesces to a single, 
narrowed line 

Spin exchange rate: 
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5. Linewidths 

 Example for line broadening: electron-spin exchange 

V/SBA-15 51V: I = 7/2 

Differentiation between isolated and strongly interacting V atoms possible 

A. Wernbacher 
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5. Linewidths 
Orthorhombic 
MoV oxide 

51V: I = 7/2 

Species Nucleus Description and Assignment Ref 

1 51V (V4+) 

Narrow isolated V4+-species, axially symmetric g and A tensors, “isolated V4+ ion in an axial crystal field (tetragonal 

distortion) … typical for a vanadyl ion VO2+ with aqua or comparable ligands” a, 

similar to [VO(H2O)5]2+ (like heteropoly compound HVOPVMo12O40 of Lee et al. [3]) 

Lee et al. [3], Luca et al. [4] 

2 51V (V4+) Same as “species 1” but with lower intensity, (like heteropoly compound H4PVMo11O40 of Lee et al. [3]) Lee et al. [3], Luca et al. [4] 

3 V 
Broad species centred at g = 1.97 indicating interacting V4+-centres (line broadening caused by spin-spin 

interactions): bulk species 
Luca et al. [4] 

4 V (or Mo) Broad species centred at g = 1.95 indicating strongly interacting paramagnetic species (V4+ or Mo5+): bulk species   

5 / / / 
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