

Fundamentals of X-ray diffraction

Elena Willinger

Lecture series: Modern Methods in Heterogeneous Catalysis Research

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

History of X-rays

Anna Bertha Röntgen

Wilhelm Röntgen

In 1895 Röntgen discovers X-rays

1901: The First Nobel Prize in Physics

Wilhelm Conrad Röntgen

Prize motivation: "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him"

History of X-ray

Max von Laue

1914: The Nobel prize for physics

Prize motivation: "for his discovery of the diffraction of X-rays by crystals"

Director at the FHI (1951-1959)

Diffraction pattern

W. H. Bragg and his son W. L. Bragg and the diffraction of x-rays by crystals.

1915: The Nobel prize for physics

Prize motivation: "for their services in the analysis of crystal structure by means of X-rays"

The progress in crystalline structure determination

Bragg:

In sodium chloride there appear To be no molecules represented by NaCl. The equality in number of sodium and chloride atoms is arrived at by a chess-board pattern of these atoms; it is a result of geometry and no of a pairing off of the atoms

William H. Bragg

Fm-3m a= 5.64 Å

Henry Armstrong

This statement is...absurd to the nth degree; not chemical cricket. Chemistry is neither chess nor geometry, whatever X-ray physics may be. [...]

It is time that chemists took charge of chemistry once more and protected neophytes against the worship of false gods...

The Yeast Ribosome

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

X-rays are electromagnetic waves

micro

(dop)

Conventional X-ray laboratory source

Electrostatic potential 20 to 60 kV Anode current 10 to 50 mA Input power ~ 0.5 to 3 kW Only 0.1% transforms into X-ray beam The wavelengths most commonly

The wavelengths, most commonly used in crystallography: 0.5-2.5 Å

A typical x-ray spectrum from a Cu target

Characteristic X-ray lines

Anode	Ка	Κβ
Cu	1.54184 Å	1.39222 Å
Мо	0.71073 Å	0.63229 Å

The Berlin Electron Storage Synchrotron radiation (BESSY)

Advantages:

High brightness \longrightarrow small samples High collimation \longrightarrow high resolution of 20 Continuous spread of wavelengths

Disadvantage:

the synchrotron sources are not available on a daily basis

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

Scattering intensity distribution

Thomson scattering formula

$$I = I_0 \frac{e^4}{r^2 m^2 c^4} \left(\frac{1 + \cos^2 2\theta}{2}\right)$$

the source and detector are far away from the object the object is small

Elastic - no energy loss coherent - no random phase shift scattering

 $S = 2|k|sin\theta$ scattering vector

 $\Delta \phi = S \bullet R \qquad \text{phase shift}$

Scattering intensity

$$I(\mathbf{S}) = \sum A_{j} e^{-2\pi i} (\mathbf{S} \cdot \mathbf{R}_{j}) \bullet \sum A_{k} e^{2\pi i} (\mathbf{S} \cdot \mathbf{R}_{k}) = \sum \Delta A_{j} A_{k} e^{-2\pi i} (\mathbf{S} \cdot (\mathbf{R}_{j} - \mathbf{R}_{k}))$$
$$= A^{2} \sum \sum e^{-2\pi i} (\mathbf{S} \cdot (\mathbf{R}_{j} - \mathbf{R}_{k}))$$

 $\{\mathbf{R}_{i}^{-}\mathbf{R}_{k}\}$ – Object property (unique set)

Atomic scattering amplitude E(s)

E(s) is the sum of all the electrons scattering amplitudes

 $A_{at}(s) = \sum_{j=0}^{z-1} A_e(s) e^{-2\pi i (sr)}$

Atomic scattering factor f(s)

 $f(s) = A_{at}(s) / A_e(s)$ $f(s) = \sum_{j=0}^{z-1} e^{-2\pi i (sr)}$ s=0, f(s)=Z

 $r_j=0$, f(s)=Z and doesn't depend on s

Since electrons are not concentrated in one point f(s) depends on $s = 2sin\theta/\lambda$

Atomic scattering factor

O, z=8, atomic radius =0.66 Cl, z=17, atomic radius=1 Cl-, z=18, radius= 1.81 K, z = 19, atomic radius=2.02 K+ =18, radius= 1.33

X-ray atomic factors of O, Cl , Cl $^{-}$ and K^+ ; smaller charge distributions have a wider atomic factor.

Atomic scattering factor

X-ray scattering by crystalline (periodic) ensemble of atoms

$$\mathbf{R}_{mnp} = \mathbf{ma} + \mathbf{nb} + \mathbf{pc}$$

Periodic arrangement of atoms is given by lattice with the basis vectors **a**,**b**,**c**

Scattering amplitude $A(\mathbf{S}) = A_e \Sigma f_j e^{-i2\pi(\mathbf{S} \cdot \mathbf{R}_j)} = -A_e f \Sigma e^{i2\pi(\mathbf{S} \cdot \mathbf{R}_{mnp})}$ In general $A(\mathbf{S}) \sim 0$ for infinite crystal, i.e. m, n and $p \rightarrow \infty$

But if $(\mathbf{S} \cdot \mathbf{R}_{mnp}) = (\mathbf{S} \cdot \mathbf{a})m + (\mathbf{S} \cdot \mathbf{b})n + (\mathbf{S} \cdot \mathbf{c})p = q - integer$

then $e^{i2\pi(S \cdot R_{mnp})} = 1$ and $|A(S)| = N A_e f(s)$, N – number of atoms,

There is the only solution: $\mathbf{S} = {\mathbf{G}_{hkl}} = {\mathbf{ha}^* + \mathbf{kb}^* + \mathbf{lc}^*}$ with $\mathbf{a}^* = [\mathbf{b} \times \mathbf{c}]/V$, $\mathbf{b}^* = [\mathbf{c} \times \mathbf{a}]/V$, $\mathbf{c}^* = [\mathbf{a} \times \mathbf{b}]/V$, $V = (\mathbf{a} [\mathbf{b} \times \mathbf{c}])$

Ewald construction

Space of wave vectors - Ewald construction

 $\mathbf{G}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$ $\mathbf{G}_{hkl} = 2|\mathbf{k}|\sin\theta$

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

Crystal periodic structures

Quartz

Trigonal

Pyrite

cubic

Rocksalt

cubic

Bravais lattices

Bravais	Parameters	Simple (P)	Volume	Base	Face
lattice			centered (I)	centered (C)	centered (F)
Triclinic	$a_1 eq a_2 eq a_3 \ lpha_{12} eq lpha_{23} eq lpha_{31}$				
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$				
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^\circ$ $\alpha_{23} = \alpha_{31} = 90^\circ$				

Table 1.1: Bravais lattices in three-dimensions.

http://www.theory.nipne.ro/~dragos/Solid/ Bravais_table.jpg

Symmetry elements

Interaction of symmetry elements

32 Point groups

Table 1.8. Symbols of crystallographic point groups.

Crystal	First position		Second	position	Third p	position	Point	
system	element	direction	element	direction	element	direction	group	
Triclinic	$1 \text{ or } \overline{1}$	any	none		none		1, 1	
Mono- clinic	2, m or 2/m	Y	none		none		2, m, 2/m	
Ortho- rhombic	2 or m	Х	2 or m	Y	2 or m	Ζ	222, mm2, mmm	
Tetragonal	4, 4 or 4/m	Z	none or 2 or m	X	none or 2 or m	base diagonal	4, 4, 4/m, 422, 4mm, 42m, 4/mmm	
Trigonal	3 or $\overline{3}$	Z	none or 2 or m	X	none		3, 3, 32, 3m, 3m	
Hexagonal	6, 6 or 6/m	Ζ	none or 2 or m	Х	none or 2 or m	base diagonal	6, 6, 6/m, 622, 6mm, 62m, 6/mmm	
Cubic	2, m, 4 or 4	X	3 or 3	body diagonal	none or 2 or m	face diagonal	23, m3, 432, 43m, m3m	

We want to know where in the 3D periodic structure the symmetry element is located!

Translational symmetry elements

Reflection + translation = glide planes

Table 1.15. Crystallographic glide planes										
Plane symbol	Order	Graphical symbol ^a	Translation vector							
a	2	Γ :	a/2							
b	2	┌	b/2							
с	2	· · · · · · · · · · · · · · · · · · ·	c /2							
n	2	·	d/2 ^b							
d	4	1/8 3/8 =: \$:=	d /4 ^b							
	•	1/8 3/8	U 7							

<i>a</i> \perp [010] or [001]	b _ [100] or [001]	c _ [100] or [010]
a [100]	b [010]	c [001]

Glide planes

Translational symmetry elements

Rotation + translation = screw axis

X_y The degree of rotation is 360/x The translation is y/x units along screw axis

Order	Screw axes
2	21
3	3 ₁ , 3 ₂
4	4 ₁ , 4 ₂ , 4 ₃
6	6 ₁ , 6 ₂ , 6 ₃ , 6 ₄ , 6 ₅

Screw axis in Quartz

С

S.G.: P3₁21 trigonal Z: 3

Space group

The combination of all available <u>symmetry operations</u> (32 point groups), together with translation symmetry, within the all available <u>lattices</u> (14 Bravais lattices) lead to 230 Space Groups that describe the <u>only ways in which identical objects can be arranged in an infinite lattice.</u>

Cubic

(36)

23	$P23^{195}, F23^{196}, I23^{197}, P2_{I}3^{198}, I2_{I}3^{199}$
m3	Pm3 ²⁰⁰ , Pn3 ²⁰¹ , Fm3 ²⁰² , Fd3 ²⁰³ , Im3 ²⁰⁴ , Pa3 ²⁰⁵ , Ia3 ²⁰⁶
432	$P432^{207}, P4_232^{208}, F432^{209}, F4_132^{210}, I432^{211}, P4_332^{212},$
	$P4_132^{213}, I4_132^{214}$
43m	P43m ²¹⁵ , F43m ²¹⁶ , I43m ²¹⁷ , P43n ²¹⁸ , F43c ²¹⁹ , I43d ²²⁰
m3m	Pm3m ²²¹ , Pn3n ²²² , Pm3n ²²³ , Pn3m ²²⁴ , Fm3m ²²⁵ , Fm3c ²²⁶ ,
	Fd3m ²²⁷ , Fd3c ²²⁸ , Im3m ²²⁹ , Ia3d ²³⁰

Intenational tables for Crystallography

	СС)N'	TINUEI)					No. 221		Pm3	т				_
Generators selected (1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5); (13); (25)									25)							La
	Positions Multiplicity, Coordinates Wyckoff letter, Site symmetry				Reflection conditions						Mn					
										General:						0
	48	n	1	(1) x, y, z (5) z, x, y (9) y, z, x (13) y, x, z (17) x, z, y (21) z, y, x (25) x, y, z (29) z, x, y (33) y, z, x (37) y, x, z (41) x, z, y	(2) <i>x</i> , <i>y</i> , <i>z</i> (6) <i>z</i> , <i>x</i> , <i>y</i> (10) <i>y</i> , <i>z</i> , <i>x</i> (14) <i>y</i> , <i>x</i> , <i>z</i> (18) <i>x</i> , <i>z</i> , <i>y</i> (22) <i>z</i> , <i>y</i> , <i>x</i> (26) <i>x</i> , <i>y</i> , <i>z</i> (30) <i>z</i> , <i>x</i> , <i>y</i> (34) <i>y</i> , <i>z</i> , <i>x</i> (38) <i>y</i> , <i>x</i> , <i>z</i> (42) <i>x</i> , <i>z</i> , <i>y</i>	(3) x, y (7) z, x (11) y, z (15) y, x (19) x, z (23) z, y (27) x, y (31) z, x (35) y, z (39) y, x (43) x, z (47) z, y	z (1) z (1) z (1) z (1) z (2) z (2) z (2) z (2) z (3) z (3) z (4) z (4) z (4)	(4) x, y, z (8) z, x, y (2) y, z, x (6) y, x, z (20) x, z, y (21) z, y, x (22) x, z, y (24) z, y, x (28) x, y, z (28) x, y, z (32) z, x, y (36) y, z, z (44) x, z, y (48) z, y, x		no conditi	ions					
								, -,,,		Special: n	o extra conditions					
	24	m	<i>m</i>	X, X, Z Z, X, X X, X, Z X, Z, X	X, X, Z Z, X, X X, X, Z X, Z, X	x,x,z x,z,x x,x,z z,x,x	x, x, z x, z, x x, x, z z, x, x	Z, X, X X, Z, X X, Z, X Z, X, X	Z, X, X X, Z, X X, Z, X Z, X, X						Ref Control of Control	
	24	I	<i>m</i>	$\frac{1}{2}, y, z$ $z, \frac{1}{2}, y$ $y, \frac{1}{2}, z$ $\frac{1}{2}, z, y$	$\frac{1}{2}, y, z$ $z, \frac{1}{2}, y$ $y, \frac{1}{2}, z$ $\frac{1}{2}, z, y$	$\frac{1}{2}, y, Z$ $y, Z, \frac{1}{2}$ $y, \frac{1}{2}, Z$ $Z, y, \frac{1}{2}$	$\frac{1}{2}, y, z$ $y, z, \frac{1}{2}$ $y, \frac{1}{2}, z$ $z, y, \frac{1}{2}$	$\begin{array}{c} Z, \frac{1}{2}, y \\ y, Z, \frac{1}{2} \\ \frac{1}{2}, Z, \overline{y} \\ \overline{Z}, y, \frac{1}{2} \end{array}$	$ \begin{array}{l} $							
	24	k	<i>m</i>	0,y,z z,0,y y,0,z 0,z,y	0, y, z z, 0, y y, 0, z 0, z, y	0, y, z y, z, 0 y, 0, z z, y, 0	0, y, z y, z, 0 y, 0, z z, y, 0	z,0,y y,z,0 0,z,y z,y,0	z,0,y y,z,0 0,z,y z,y,0							
	12	j	<i>m</i> . <i>m</i> 2	$\frac{1}{2}, y, y$ $y, \frac{1}{2}, y$	$\frac{1}{2}, \mathfrak{P}, \mathfrak{P}$ $\mathfrak{P}, \frac{1}{2}, \mathfrak{P}$	$\frac{1}{2}, y, y$ $y, y, \frac{1}{2}$	$\frac{1}{2}, \overline{y}, \overline{y}$ $\overline{y}, \overline{y}, \frac{1}{2}$	$\begin{array}{c} y, \frac{1}{2}, y\\ y, y, \frac{1}{2} \end{array}$	$y, \frac{1}{2}, y$ $y, y, \frac{1}{2}$							
	12	i	<i>m</i> . <i>m</i> 2	0,y,y 9,0,y	0, y, y y, 0, y	0, y, y y, y, 0	0, <i>5</i> ,5 5,y,0	y,0,y y,y,0	y,0,9 9,9,0		4 -	2	0 0 0			
	12	h	<i>m m</i> 2.	$x, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$	$\tilde{x}, \frac{1}{2}, 0$ $\frac{1}{2}, \tilde{x}, 0$	$0, x, \frac{1}{2}$ $x, 0, \frac{1}{2}$	$0,\mathfrak{x},rac{1}{2}$ $\mathfrak{x},0,rac{1}{2}$	$\frac{1}{2}, 0, x$ $0, \frac{1}{2}, x$	$\frac{1}{2}, 0, x$ $0, \frac{1}{2}, x$	La Mn	1a 1h	m-3m m-3m	000 1/21/21/2			
	8	g	.3 m	x,x,x x,x,x	X, X, X X, X, X	x, x, x x, x, x	x, x, x x, x, x			$\mathbf{\hat{\mathbf{A}}}$	2.		0 1/ 1/	1/ 0	1/	1/ 1/ 0
	6	f	4 <i>m</i> . <i>m</i>	$x, \frac{1}{2}, \frac{1}{2}$	$\mathfrak{X}, rac{1}{2}, rac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \mathfrak{X}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, x$	$\frac{1}{2}, \frac{1}{2}, \mathfrak{X}$	0	3C	4/mm.m	U 72 72	72 U	72	72 72 U
_	6	е	4 <i>m</i> . <i>m</i>	<i>x</i> ,0,0	x ,0,0	0, <i>x</i> ,0	0,x,0	0,0, <i>x</i>	0,0,1							
ſ	3	d	4/m m	.m 1/2,0,0	$0, \frac{1}{2}, 0$	$0, 0, \frac{1}{2}$										
	3	С	4/m m	$.m 0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$										
1	1	b	<i>m</i> 3 <i>m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$												

 $1 \quad a \quad m\bar{3}m$

0,0,0

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

Laue diffraction

 $2d_{hkl}sin\theta_{hkl} = \lambda$

 θ_{hkl} is fixed \longrightarrow polychromatic radiation The crystal position is fixed

Laue diffraction

Historical X-ray photograph

Silicon crystal, 3-fold [111]* axis S.Gr.: Fd-3m face-centered cubic (*fcc*)

Modern XRD pattern of Hemoglobin obtained with the CCD detector

Bragg diffraction (oscillating crystal)

Bragg diffraction (the crystal rotating)

Debye-Scherrer diffraction

 $2d_{hkl}sin\theta_{hkl}=\lambda$

 λ is fixed \longrightarrow monochromatic radiation

Debye-Scherrer diffraction

CCD detector

- History of X-ray
- Sources of X-ray radiation
- Physics of X-ray scattering
- Fundamentals of crystallography
- X-ray diffraction methods
- X-ray diffraction in material science: examples

Structure factor

AuCu- face-centred cubic (F), fcc

disordered solid solution

Perovskites

Perovskites

X-ray scattering physics

Finite crystal

$$I \sim \frac{\sin^2(N_1\varphi_1)}{\sin^2\varphi_1} \cdot \frac{\sin^2(N_2\varphi_2)}{\sin^2\varphi_2} \cdot \frac{\sin^2(N_3\varphi_3)}{\sin^2\varphi_3}$$
$$\varphi_1 = \pi (\mathbf{S} \cdot \mathbf{a}), \ \varphi_2 = \pi (\mathbf{S} \cdot \mathbf{b}), \ \varphi_3 = \pi (\mathbf{S} \cdot \mathbf{c})$$

 $N_1 = 10$

There are high peaks in I(S) when $(S \cdot a^*)$ - integer

 $N \longrightarrow \infty$ $I \sim N_1^2 \cdot \delta(\mathbf{S} \cdot n \cdot \mathbf{a}^*)$