

Nanostructured Carbons

- Carbon in its sp2 allotrope forms a large number of "pseudophases" called "nanocarbon or "SCA".
- These are semimetals or semiconductors.
- They exhibit extreme chemical anisotropy.
- Chemical reactivity occurs at localized double bonds or aromatic terminal sites.
- The basal planes are active for chemisorption but not for covalent bonding.
- The 3-dimensional stacking or warping creates spaces for intercalation.
- Electrocatalysis is a premier application area followed by metal-free heterogeneous catalysis.

Electrochemistry

Requirements for nanocarbons

System chemistry: Water splitting

Pt single crystals as reference OER electrodes Chemistry at the interface: dynamics

Photoelectron spectroscopy on emersed Pt after 3 h at 1.6 V RHE

Pt- carbon for water electrolysis: the reference

The role of the support structure

11

Origin of good sticking of the metal: point defects of carbon plus functional groups

Nanocarbon as support in OER electrodes (with F. Schueth, KOFO)

Pt- Carbon How electrocatayIsts look like

Stability: a main challenge

The performance of the best OER catalyst is quite insufficient at relevant current densities: massive electrodes at low current densities as technical "solution"

Carbon an electrode for water oxidation? What about some help with a co-catalyst?

 $C + 2H_2O \leftrightarrow CO_2 + 4H^+ + 4e^- \qquad E^0 = 0.207 V$

A: capacitance and oxidation of surface Carbon is the provision unstable against dissolutionain nonapidis waters.

D: passive carbon Kinetically strongly inhibited by C-H termination

At 1.8 V vs. RHE 0.5 M H₂SO₄

19

Reference HOPG electroxidation

Not trivial to detect damage as product is volatile and carbon defects accumulate only as intermediates

At 1.4 V and 1C flow of electrons substantial damage through formation of C-O hetero-bonds leading to warped graphene BSU

Contact with water ?

This critical property for electrochemistry depends sensitively on the surface termination.

_	_	 an consta a	

320: pH 6 contact angle : 21°

HIC_900 C						
pН	SN	C [wt %]	H [wt%]	N [wt%]	O [wt%]	
0	#349	92.5	1.7	2.9	3.0	
3	#480	97.7	0.45	0.48	1.4	
6	#508	93.9	0.82	0.2	5.1	

Synthesis controls the properties but no simple correlation.

Synthesis and typology of NC

There are many variants, few of them are "materials"

How we generate nanocarbons

Catalytic carbon synthesis

A metal catalyst dissolves carbon from a molecular source and segregates it on ist (111) terraces via steps as graphene layers: Topotactic formation of nanocarbon given through the size and shape of the metal particle.

Poisoning and hindrance through reaction of dissolved carbon with the catalyst: carbide freezes carbon casting: re-activation thermally or through redox reaction (water hydrogen) with the carbide.

Reaction anisotropy

Catalytic methanation at 1273 K observed in situ in pure hydrogen:

Strict reaction at the interface carboncatalyst, no direct attack.

Note the reconstruction of the Pt catalyst due to graphene adsorption.

Carbon: nanostructure creates variability

Topology and real surface

Highly functionalized nanocarbon

Xiaochen Zhao, Chem. Mater. **2010**, *22*, 5463– 5473

Realization of AC-supported CNF

Activated carbon calcined at 673 K

Graphitic CNT with high surface area

Ammonia splitting for hydrogen storage carbon as dimensionally stable support

Pd/CNT in H_2O_2 synthesis also a test reaction for water splitting

Bottom-up synthesis from "black stuff" to designer carbon

Solvothermal synthesis a scalable concept for de-novo carbon

Electronic structure

The origin of the use of nanocarbons in (electro)catalysis

Band structure of graphene and nanocarbon

Electronic anisotropy: the role of "defects" as centers of reactivity

Functional groups

The main reason for making nanocarbons in chemical applications:

Exist only at defects of the graphene structure!

Surface quality

The surface charge coming from functional groups controls chemisorptive properties and hydrophilicity

Combustion: A valuable analytical tool describing the ordering state

Combustion that is conducted such that not oxygen limitation controls the kinetics allows detained insight into the nature of the burning carbon: the reaction is only possible at defects and edge sites.

What happens during carbon oxidation

Calibration of functional group analysis

Table 5 Fitting parameters for O1s-XPS in figure 7 and figure 8 (Shirley background)						
Fitting model	X-ray source	O1s component [eV]		FWHM of O1s components [e∨]		
	Non- monochromatized	Fixed	534.20 ± 0.1 533.30 ± 0.1 532.75 ± 0.1 532.20 ± 0.1 531.20 ± 0.2	1.6		
Our fitting model		Not fixed	530 range 535 range			
(seven-component)	Monochromatized (Bessy)	Fixed Not fixed	534.20 ± 0.1 533.30 ± 0.1 532.75 ± 0.1 532.20 ± 0.1 531.20 ± 0.2 530 range 535 range	1.2		
Two-component fitting model	Non- monochromatized	Fixed	533.2 ± 0.5 531.5 ± 0.5	1.6		
	b	and the second second	C			

How to identify surface groups? Thermal desorption

Concept: can we use carbon as selective cataylst for oxidation reactions?

With K. Müllen and team

Comparison of ODH reactions over MWCNT

53

Propane ODH: compare metal oxide to metal-free MWCNT

N- CNT "dernier crie"

The concept of "doping" is not as simple as zhought: many experiments still limited convergence

A nitrogen-rich form of carbon: mpg-C3N4

Since decades the N-substitution of sp2 C is a challenge: functional groups are facile, the true "graphenic" N is a challenge. Motivations are "n-doping" of carbon and the predicted superior mechanical properties of (CN)x

Doping: Nitrogen in carbon "graphenic N"

Carbon functionalization is key

De-activation of functional groups: P- CNT

- Nanocarbons are non-equilibrium variants of graphene.
- Semimetal with topological fractional double bond localization.
- Defect chemistry as "functional groups".
- Most frequent are –H and C₂O, all other forms are rare but important for chemical reactivity.
- On basal planes no chemical reactivity but electron transfer upon potential gradient.
- Thermodynamical unstable in electro-oxidation: kinetic stabilization.
- Multiple applications as metal-free catalysts or as support.
- Role of "N-doping" complex and still under study: non-trivial.

Dem Anwenden muss das Erkennen vorausgehen

Max Planck

Thank You