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Constg,lctive interference

Image - Interpreting the image

simulation - Easy change of instrumental parameters (e.g. high
voltage, focus...)
- Two methods: Bloch wave eigenstates or multi-slice
methods

Image -Improve interpretability
processing -Recover additional information
(image restoration deconvolve transfer function of
the instrument from a single image vs.
image reconstruction combination of several images
into one image)

Broad research field

Instrument
design

On-line control

Record the data and to control the instrument
ata archiving | Digital storage vs. Photographs (degrading time)
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Symbol

Table 1.1 Some symbols and their descriptions

Description

a,b,c
ap

3

= k(C,A3)!4

o A K THQNR T <3

~

Sa¥ats
|
p

QU
Q

Unit cell size of the specimen in X,y,z directions
Bohr radius (0.529 Ang.)

Speed of light

Charge on the electron

Rest mass of the electron

Total mass of the electron
Accelerating voltage

Planck’s constant (4 = h/(2m))
Electron wavelength

Phase error due to aberration of a focused electron wave
Electron scattering half angle
Condenser illumination half angle
Position in the image plane
Position along the optic axis

2D spatial frequency in the Fourier transform of the image plane

dimensionless spatial frequency

Defocus

Third order spherical aberration
Fifth order spherical aberration
Electron interaction parameter

Partial cross section for scattering

T. Lunkenbein, FHI



Early 1930s: Knoll and Ruska build first
TEM

1986: Nobel Prize in physics for

Ernst Ruska (TEM),

Gerd Binnig & Heinrich Rohrer (STM)

T. Lunkenbein, FHI
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Ruska von Ardenne
CTEM STEM

Transmitted electrons will be detected

> High energy of electrons (100-1000kV)

Knoll et al. Z. Physik 1932, 76, 649-654.
v.Ardenne Z. 7ech.Physik 1938, 19, 4B37-416.
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Scheme of a modern
high resolution ﬂ\\.
aberration corrected TEM

Schottky electron source

Gun monochromator

Accelerator

3 Lens condenser
system

Specimen stage

Specimen holder

-~ Objective lens

Image spherical
aberration correctc

- Projector system

gap |
coil coil
magnetic material magnetic material
optic axis
optic axis

glass analog
(from light optics)
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Cold FEG vs. Schottky FEG

Cold FE Tip
used 4000hrs

Effective source
size: 5 nm

The Transmissi

st anodq 7 /\ <}
2nd anodd_ N\ \/ 2~}

Flashing current

Cold-FE

|__source | Thermoionic | Thermoionic | __F:c___ | ColdFic

Material
Work function
[eV] 4.5
Tip radius [pm] 50-100
Temperature [K] 2800
Normalized
Brightness [Acm- 104
Zsr-l]
Energy spread at 1.5:2.5

gun exit [eV]
Vacuum [Torr]

Dehm et al. In-situ Electron Microscopy 2012; spectral.se; spie.org

LaBg
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Relativistic Electrons

1

: ,
v/c non-rel. ,’

0.9
v/c rel.
0.8
0.7

0.6

v/c

0.5
0.4
0.3

0.2

0.1F

Electron Kinetic Energy (in keV)

Schrédinger wave equation of quantum mechanics is not relativistically correct. The electron is relativistiv at the beam
energies used in the electron microscope meaning that the relativistic Dirac equation would be the correct wave

equation for relativistic electrons

0 - 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

wavelength (in Angstroms)

01
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non-relativistic

relativistic

0
0

100 200 300 400 500 600 700 800 900 1000
Electron Kinetic Energy (in keV)
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Moaelling the TEM

Sample in vacuum, illumination system (condensor) aligned

incident electrons

L

specimen
CTEM
fixed beam
objective lens
objective aperture ——— —

(back focal plane)

image plane
CCD detector

Whole image is formed in parallel

electrons

scan coils g g

objective aperture ——— —

STEM
scanned beam

z
. specimen
|
1
: high angle
: scatered electrons
1
AR
Canne :
40-200 mra

]
: ADF detector
)
BF detector

2-3 mrad

Scan angle:0.02 mrad

Focused probe scan across the sample and the image
Is built sequentially

T. Lunkenbein, FHI
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Reciprocity

electron source point detector

O O
(far field) [ (bright field)

CTEM v STEM

specimen 1

objective lens

array of point detectors
image plane (CCD or film) electron source

Electron intensities and ray paths in the microscope remain the same if their direction is reversed and the source and detector are

interchanged (electrons trajectories and elastic scattering processes have time reversal symmetry).
T. Lunkenbein, FHI
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Aberration
Most aberrations that exists for optical lenses also exists for magnetic lenses (Maxwell “equations)

Well-aligne elctron microscope higher order aberration are negligble and only third-order spherical aberration Cs has to be
considered | |

The magnetic field further away from the axis \ /_,.,__\ el
Is stronger than required electron 6 s

. !l'a_]CC!()I'ICS K w C]CCtI‘Oﬂ.
—electrons traveling at larger angles (a) are o
deflected stronger than it is required to electron
focus them moten mage point

optic axis optic axis

C, produces a position error in the electron trajectories ~3rd power of the angle

and a phase error in the electron wave function ~4 th power ortional to the phase error  x = (27/2)6

21 2 (1 1 1
_ 2 2 — s =" 2o Gt - 2 Ce® - Af=—C
a=.jegt+ai X=7 1(21“+43“+65“+) f=-a

Scherzer Theorem: A static, rotationally symmetric magnetic field with no sources on the axis will always produce
a spherical aberration greater than zero because the expression for Cs can be written as the sum of quadratic terms.

) | | Ak=a: semiangle of the ojective
24 4 2 o aperutre
x(o) = ¥R (ZCSO{ B EAfa ) o= Ak Af=-C: defocus
C,=C,: spherical aberration (3rd order)
A= wavelength

8- deviation | \\nkenbein, FHI
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Aberration correction

Rotational lenses have always positive aberrations

Correction: non-rotationally symmetric lenses are used
To produce negative aberrations to balance positive

aberrations

magnetic material

| Qi

| Q2

| Q3

| Q4

optic axis
(top view)

converge and diverege the beam
- Negative aberrations

(side view)

Aberration corrected TEM

specimen

CORRECTOR

(quadrupoles,
hexapoles,
octopoles)

\ 4

STEM

condencer projector

len lens

source image

opticraxis

T. Lunkenbein, FHI



e Approximation to calculate TEM and STEM images using linear image
models.

Al L1

Object Function Point Spread Function Image
fx) h(x) g(x)
Ideal image of Representation of Image intensity
the object an image of an

isolated point in
the specimen
(instrument
related)

g(x,y) = f(x,y) ®h(x,y) G(k) = F(k)H (k)

Vogt et al. — Modelling Nanoscale Imaging in Electron Microscopy 2012. T. Lunkenbein, FHI
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Weak Phase Object in BF-TEM

very thin sample + only light atoms Fast electrons pass through a thin sample.

Electrons deviate slightly in their phase

(x)

incident electrons winc

Effect can be modeled by a transfer function (t(x))

specimen

v (%) W (X) = 1(X) Wine (X)

Aberrations in the objective lens shift the phase of
objective lens each frequency component

Obijective lense forms an reciprocal image in the back

objective aperture ___ ——= Y;(k) Focal plane

(back focal plane)
¥ (k) = FT[y;(x)]
¥i(k) = ¥i(k)exp[—iy (k)] = ¥ (k)Ho (k)
%Y Obijective lens images this wave function
7 —>inverse FT

Recorded image is the intensity of the image

_ > Wave function

image plane g(x)=|y; (x)|

g(x) = [wi(x)|* = [y (x) @ ho(x) |

| - Specimen shall produce a phase shift in
optic axis the electron wave function
- Weak specimen: exponential phase factor
cT(X) ~ t(x) ~explio,v,(x)] ~ 1 +i0,v,(X) F - be expanded in a power series
[X) ( ) p[ : Z( )] - Z( ) -Only low order terms are important
T. Lunkenbein, FHI
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Weak Phase Object in BF-TEM

G(k) = FT[g(x)] = 8 (k) +20.V: (k) Hyp (k)
pr(k) =FT [kwp(x)]

_ % {exp|—iy (k)] —explix (k)]}
Problem!!!

Some spacinges will be transmitted as white (H,,p(k)>0); at the same time other spacing are transmitted black (H,,p(k)<0)

-but: minimum of H,,(k) remains flat for significant region

If focus is adjusted so that the sin function is close to its minimum or maximum

>Hyp(k) has a region of uniformly transferred information

N
0.7 < |siny (k)| < 1.0
o ZnD—l T
np=1,2,3,...

Solution!!!

X(K) - E(O'S(\/B)4 T D(\/B)z) o= interaction parameter

D = +/2np—0.5

Af = +/(2np—0.5)CsA
np=1,273,...

T

Scherzer focus

y(k)= aberration function
np: integer numbers

C,: spherical aberration
D: dimensionless defocus
A=wavelength

Af: defocus

T. Lunkenbein, FHI
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Scherzer Condition

Better to limit the range of spatial frequencies

- Transfer function has same sign over the 61 1
Allowed range Oinie = AR = (F)
S

->place objective aperture in the back focal plane
Of the objective lens +

2 Faperture COFrEsponds to the spatial frequency D=+1.5

All rays within a maximum of the optical axis are
Allowed to pass

- Objective aperture limits the maximum Scherzer condition

Spatial frequency in the image

->CTF has same sign over the range

Resolution at Scherzer condition:

3\ 1/4
dy > (Cé‘ ) = 0.64(CADH* =1 /kmax.

ACY

Scherzer aperture

Corresponds to the first zero
crossing of the transfer function

Scherzer focus

A: wavelength
C,: spherical aberrations
Kmax: maximum spatial frequency

T. Lunkenbein, FHI



5.5

4.5

3.5

Resolution (in Angstroms)

100 keV

400 keV

10°
Spherical Aberration, Cs (in mm)

10!

T. Lunkenbein, FHI
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Partial Coherence

Imaging with none ideal illumination

Condenser delivers a small cone of
Illumination on the sample;

Each illumination angle will be incoherent
With other angles

—adding intensities and amplitudes

incident

I

I ;
I

illumination ]

I

/ optic axis
\

/

)
specimen

. S

N

optic axis !

specimen

objective lens
and aperture

Transmitted wave function function of the specimen:

Image intensity:

Energy fluctuations contribute to the defocus fluctuations

8) = [ 1vix)P” pliy)p(8)ddicky

Vi (x) =t(x)exp(2rmikg - x)

Af: defocus

p(kg): distribution of illumination angles

p(&;): distribution of the fluctuation of the defocus
&;: fluctuation in defocus

B=2k;: angle of incident illumination (with
Respect to the optical axis

= [ {lt0exp(riky -x)] @ho(x, Af + &) plics)p(E)d6ky

T. Lunkenbein, FHI



Hwp(k) = sin {

X—
V1+ek?

E= 200keV, Cs= 1mm, df= 600A, Beta= 0.5mrad,

Transfer function of the objective lens:

A k2 (
+ ek?

0.5C,(1 — ek*) A% k> — A f)}

exp {—

ddf= 100A

1o

coherent

e —

MTF

=
e

partially coherent

N/ ‘l

0.2 0.3 0.4 0.5 0.6
Spatial Frequency (in 1/A)

[TAkk(CoA%K> — Af)]? +0.25(TAAGk?)?
1+ ek?

e=mikA,

k=K ()24

Ag=D(C, A)¥2: rms value of all fluctuations
A wavelength

D,: Spread in defocus values

K,: Spread in illumination angles

Af: defocus

B= Ak : condenser semiangle

C,: spherical aberrations

T. Lunkenbein, FHI
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e=mik A,
k=K(Ca3)
. . Ay=D¢(C, 1)V2: rms value of all fluctuations
Higher aberrations : wavelength
D,: Spread in defocus values
K,: Spread in illumination angles

1 Af: defocus
pr(k) = — B=2k,: condenser semiangle
2 C.: spherical aberrations
V14 ek s P

[ mAk? 1 2\ n 4,4 2\ 7272
X S1n !1—|—8k2 (§®128k )A k +O.5CS3(1—8k )l k"—Af

[PAksk (s *k* + Cs3A%K> — Af)]* +0.25 (nmok2)2]

Detector Influence

g(x) = |y (x) ® ho(x)|* ® hper(X)

T. Lunkenbein, FHI



STEM TEM

self-luminous object plane wave

_ ¥
Torsore s AN

~The function of the condenser in \/
microscopic practice Is to cause
the obeject to behave, at any rate No phase relationship Permanent phase relationship
in some degree, as If it were (one atom column at one time) between neighbours
self~luminous, and thus to obviate
the sharply-marked interference bands No interference is observable Multi slit experiment
which arise when permanent and definite
phase relationships are permitted to exist direct interpretation possible Interference occurs
between the radiations which issue (Z contrast)
from various points of the object." No direct interpretation possible

(phase loss)

Incoherent Imaging gives significantly better resolution than coherent imaging

Nellsit et al. Advances in Imaging and Electron Physics 113, 147-203.



diffraction plane

The center region (annular detector) (CBED pattern)

ADF detector

v, (K, xp) STEM image CBED

9902 g(x,) = [ e x,)BD(K) Pk

o MU
T i i AC
5L g Linear
e @)

S FHI
Annular Dark Field STEM MKy =0may: Maximumg angle in the objective

aperutre
The order of optical components of the STEM is reversed from that of the TEM X,: deflected probe position
i.e. objective lens before specimen Ay normalization constant
D(k): detector function
incident electrons
Transmitted electrons fall on detector ~ © Ve imax _ ' )
>form image brightness at one point ~ (rincile pianey == = V(X Xp) = A, /0 exp[—iy (k) — 27ik- (x —x,)]d°k
objective lens

Complete image: scanning with a focused |

Probe over the specimen + recording the pecimen | Vp(%:Xp) Wi (X, X)) = £(X) W) (X, X))

Transmitted intensity at each position of | v, (%, Xp)

the probe Xy |

‘ ¥ (Kk,x,) =FT|y(x,x :/ex 21k - X) ¥ (X, X, )d2x
The detector integrates everything except | k%) V(XX )] Pl JVi (%))
|
|

optic axis

D(k) =1 for kpmin <k < kpmax
= 0 otherwise,

Incoherent image model - phase contrast negligible
+ image predominantly amplitude contrast

The probe size is limited by the aberrations of the objective lens.

Deflecting the beam to different positions changes the angles through the objetive lens
At high resolution this deflection angle is aroung 0.01 mrad.

Brax << 0.160m,x  coherent imaging

Bmax > 0.160m,x  incoherent imaging

T. Lunkenbein, FHI
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Annular Dark Field STEM

- Linear image model for incoherent scattering:

g(x) = f(x) ® hapr(x)

Object function (probability for scattering to large angles) Ok

do(x)

: partial cross section for scattering to angle

k, at position x
kDmax do(x) 2 D(K): detector function
B doks x(Kk): aberration function
ks A,: Normalization constant

F(%) ~ f D(k)ag—g)dzks _ /k

Dmin

Point spread function (intensity distribution in the focused probe)
hape(x) = |y, (x)[?
2

kmax
— A, / exp[—iy (k) — 2rik - x]d’k
0

Transfer function (FT of Point spread function)
1 . :

1o,
08¢ ADF-STEM
06} 0.8 4
04} 0.6 4
02}
" 0.4 |
s O 7
0.2
-0.2 " “‘
) I “ “\ \
~0.6 2 LSS 3
BF-CTEM 1
-0.8
- 0 01 02 03 04 05 06 07 y (n Ang.) 3.3 X{iD:Ang:)

k (in 1/Ang.) i
in 1/Ang T. Lunkenbein, FHI
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Source Size

Probe: Image of the electron source (can contribute to the probe size)

Brightness of the source

J
ﬁ = ) j= current density in the probe
a= convergence half angle
Brightness is conserved in mgentic lenses p= brightness
I,= probe current
N . . . d.= probe size (diameter
Condenser + objective lenses demagnify the image of the source onto the specimen = P ( )
More source demagnification produces less current
Relation between probe size and probe current
1
Ip = -0 Bd3
4
10°
104 L
3k E
"W CFEGS M T i = 10° amp/(cm?sr)
s ' CFEG.10mrad...
g 10\ ffrnnnaimannnnnnngaeuwinnnnunnnns
3 100
@
S 10}
= ) F 4 — 6 2
10 LdB, 10 mrad = 10° amp/(cm?sr)
103 i ;
i N\
1000 \1o¥ 10"

source size (in Ang.)

Each part of the source can emit electrons that can form an image of their own. Each of this image is offset in position and
Demgnified by the lenses. > Convolution with an effective source size in the specimen plane

g(x) - f(X) @ hADF(X) ® hsource(x) T. Lunkenbein, FHI
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The weak phase object

Primary interaction between electron and specimen - electrostatic potentail and charge of the electron
TEM: incident electrons are a superposition of plane waves
STEM: spherically convergent probe

One plane wave tavelling in z direction A= wavelength of the electron

W(X) = exp(Zﬂ:ikzz) = exp(Qﬂ;jZ / l) k,=1/ A: propagtion wave vector
h= Planck’s constant
Reciprocal expression for the wave vector in my= rest mass of the electron
vacuum c= speed of light

1 \/eV (2””0(32 + eV) eV= kinetic energy of the electron in vacuum
k; = — = eV,= kinetic energy of the electron in the
A hc specimen

For thin samples electrons pass through the specimen with only a small deviation in their path.

Specimen has a small electrostatic potential. If positive—> electrons are accelerated—> smaller wavelength

incident 1 _ [(€V+€VS)(2m0C2-§-€V+€V_g)]l/2
Vacuum V=0 wavefunction As he
. [eV(2moc? + eV) + eV (2moc® + 2eV + eVi)] /2
Specimen V>0 = he
1/2
Vacuum V,=0 transmitted _ l - eV(2moc? +2eV + eVs) /
wavefunction A eV (2myc? +eV)

T. Lunkenbein, FHI
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The weak phase object

-> Shift in phase of the electrons - electron wave function in the specimen is:

. . o= interaction parameter
V(x) ~ exp(2rik.z) exp(ioV;z) k,=1/ ).: propagtion wave vector
h=Planck’s constant
m,= rest mass of the electron (m=ym,)
o= — c= speed of light
AV \ 2mgc? +eV h2 eV= Kinetic energy of the electron in vacuum
V= specimen potential
3 A=wavelength

2 ( moc? + eV ) _ 2mmel

1

[y
c

v,(x)= total projected atomic potential

y=Lorentz factor

na
o

N

-
T

o
n

interaction parameter, in radians/
(kV-Angstroms)
(42]

0 1 1 L L 1 1 L L 1
0 100 200 300 400 500 600 700 800 900 1000
Electron Kinetic Energy (in keV)

Thin sample: phase shift of the electron wave function is the integral of the potential of the specimen
- Multiply wave function by transfer function

Y (x) = t(x)exp(2mik.z)
t(x) = expliov;(x)]

VZ(X) = vz(x:y) = st(x,y,z)dz

- Weak phase object approximation T. Lunkenbein, FHI
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Single atom properties

Radial Electron Charge Distribution

350

The peaks correspond to the atomic orbitals.

Electron cloud shields the atomic nucleus 2s0 [
200

150

-y
(=]
o

charge density (in e/Angstrom)

a
o

Si =
f\/N

radius r (in Angstroms)

Atomic sizes

0 : =
0 01 02 03 04 05 06 07 08 09

The rms radius of isolated single atoms as determined from
Projected Potential multiplied by the radius r to illustrate the the (3D) potential charge and the (2D) projected atomic

Relative contribution to an image potential

200
180}
160 |
140 |
120
100
80
60
40
20

rVz(r) (in volt-Ang-sq)

0 0.5 1 1.5 2 2.5 3
radius (in Angstroms)

rms radius (in Ang.)

1.5

05¢f

potential

0

10 20 30 40 50 60 70 80 90 100
atomic number Z

T. Lunkenbein, FHI
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FHI
Single atom properties
Potential

Electrons in the microscope interact directly with the atomic potential

Charge distribution and potential are related vie Poisson ‘s equation from electromagnetic theory

The charge distribution only includes the electron charge distribution.

The large point charge on the atomic nucleus has the strongest interaction with the imaging electrons.

Addition of nucleus to electron charge distribution + transforming into an atomic potential > much more peaked at the

nucleus 20

5000 T T v . .

18 o 4500 0=0.92 rad/kV-A 1
716 < 4000 1
14 | 3 35%9_ Phase shift
=N ntegratl Si 0.38 rad
£ = Au  1.34 rad
S 10f ©
c -—

2 gl g

a 8 e u

g 6+ E |

2 ©

= 47 = 1
2t = ]

0 0 L 1 n n I T ——

0 0.05 01 0.15 0.2 025 0.3 0.35 04 045 05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
radius (in Angstroms) radius (in Angstroms)

- S/ is reasonable weak
Au not

i (x) ~ 1(x) ~ explicev: (x)] ~ | +iGev:(x) + -+

All atoms have a near singularity at a radius close to 0; so no atom is truly a WPO in a strict sense.
T. Lunkenbein, FHI




% ¢ Calculation 3T
The scattering factor

Electron scattering: outgoing plane wave + outgoing spherical wave (spherical symmetry of the atoms) with amplitude (7.(q))

v(x) = exp(2mik;z) incident
q= 3D wave vector

2miq-
= exp(2mik,z) + fg(q')M scattered.  (difference between
r incident and scattered wave)
Born approximation: 1 ”
= V. (r)sin(2mgr)rdr. = i
fe(q) Maﬂqfo a(r)sin(27gr) a,= Bohr radius (0.5292A)

V,(r)= 3D atomic potential of the atom
e= magnitude of the charge of the electron

Amplitude of a single electron scattered by single atom

Inadequate for directly calculating electron scattering in the EM, but usful for calculating the specimen potential

f.(q) should be complex; elastic scattering: should be destroyed or created

16

IS

Z=79(Au) 200keV

3 B

scattering factor in Ang.

imag

o N & @ ®

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
scattering angle k (in 1/Ang.) scattering angle k (in 1/Ang)

Moliere approximation:

2w [ i J,= Bessel function of 0. order
felq) = T/ Jo(2mgr) ¢ 1 —exp lO'/V(x,y,z)dz rdr 6= interaction parameter
0 2= wavelength

T. Lunkenbein, FHI



-+ . Calculation
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The specimen potential
Electrons interact with the specimen as a whole.

Simulation requires the knowledge of the position of all atoms

Linear superposition approximation of the potentials of each atom in the specimen

N x;= (X;, y;): position of atom j
Z Vzj (X X; V,;(x): projected atomic potential of the atom

Exact for seperated atoms

Solids: atoms are bound together and outer electrons rearrange slightly

Slight change in v,;

In ADF-STEM: high angle scattering occures at atomic nucleus which by bonding

No influence on the linear superposition approximation.
From the specimen potential and the scattering factor the structure factor can be calculated:

q= 3D wave vector
zf ej CXP 27171(] X ]) (difference between
incident and scattered wave)

T. Lunkenbein, FHI



-+ . Calculation
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BF phase contrast image calculation

Remember: BF-TEM and BF-STEM are connected via the reciprocity theorem.

Incident electron wave function is a single plane wave of unit intensity

Interaction wit hspecimen - phase shift which is position dependent - specimen transfer function

Y (x) = t(x) exp(2mik.z) ~ t(x) v,(x)= total projected atomic potential
= interaction parameter
t(x) = exp [iGVz (X)] k,= wave vector in z direction

Transmitted wave function imaged by the objective lens

WYi(Kk)= image wave function in the back focal

#i(k) = H(K)Ho (K) plane
H, (k)= transfer function of the objective lens
y(k)= abberation function

Hy(k) = [ x(k )} (k) A(K)= aperture function

( ) _ kZ(O 5C, AQkZ Af) Af= defogus '
C,= spherical aberration

( ) =1; Ak=o0 < Olinax Zgg;(tzugaxmum semiangle of the objective

= 0; otherwise

Actual recorded image is the magnitude squared of the image wave function after inverse FT back to real space

!m(x) — FT! [‘H(k)] ho(X)= complex point spread function of the
5 5 objective lens
g(x) = [yi(x)|” = i (x) ® ho(x)|
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Steps in the calculation of CTEM images

Step 1 Calculate the projected atomic potential v,(x) from (5.19) or
(5.21).

Step 2 Calculate the transmission function #(x) = exp[iov,(x)] (5.25)
and symmetrically bandwidth limit it. The incident wave func-
tion 1s a plane wave so the transmitted wave function is equal
to the transmission function.

Step 3 Fourier transform the transmission function 7'(k) = FT[#(x)].

Step 4 Multiply the Fourier transform of the transmission function
by the transfer function of the objective lens, Hy(k) (5.27) to
get the image wave function in the back focal plane ¥;(k) =
Hy (k)T (k).

Step 5 Inverse Fourier transform the image wave function y; (k) =
FT~! [#(K)].

Step 6 Calculate the square modulus of the image wave function (in

real space) to get the final image intensity g(x) = |y (x) ®
ho (X)[*.
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Single Atoms Images : T
5 08}
i icci F. < o6}
Specimen transmission function: Bl Atom"s distance: 10 A
Slight ringing near | Image size: 50 A
the atoms: 0 10 15 20 ) 25 Aso 35 40 45 50 512 x 512 pIXG|S
Finite bandwith 1 — DITS' W,(m ",g) o Atomic potential where calculated
+ oal © si Cu Au v The Moliere apporximation

Slight asymmetry: ¢ 08

Some atome positions £ 04

are not exctly integer o2 A A
With pixel size % 5 10 15 20 2 80 85 40 45 50

position x (in Ang)

Real part depends stronger on the atomic number Z than the imaginary part.

Remember: potential has a singularity for r=0 (center of the atom)
Value at the center of the atom: average over one pixel

-> Smaller pixel size leads to values closer to the singular value at the center

1.1

Image intensity:

Image intensity between the !
atoms should be one

(vacuum) =%
Rings are part of the AIW\ %EP 08
disk due to sharp cut off in . . . » 3 E

o
o
T

reciprocal space due to the

objective aperture o6l

Rings on the right wrap oSl
around to interfﬁrelvgth the 0B Ay ™
atom on the le .
(wrap-around effect) Line scan through the center
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Th/n S,UEC/men /mages 3 common projections in TEM S "
Example: Si ) P
a @) a6
low atomic number >WPO >
Simple fcc structure © a6
o—o 1+
a2
100 110 111

Projected atomic potential of a 4 atoms
thick (110) Si Scale bar: 10 A

Super cell: 5 x 7 unit cells

128 x 128 pixels

Atomic potential where calculated

The Moliere apporximation

white: larger positive number

keakpart.

-
-
-
-
-
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Thin specimen images

Coherent BF images of (110) Si in the WPO approximation

Transfer function for a coherent BF image of (110) Si in the WPO approximation

)

100 keV

I3.13A 1.36AI

0 02 04 06
Spatial Frequency (in 1/A)

300 keV
3.13A | 1.36A
| !
I |
02 04 06

Spatial Frequency (in 1/A)

MTF

MTF

-0.5

-1

0]

-0.5

-1

200 keV

3.1§A ‘1.36/-\I

A

0 02 04 06
Spatial Frequency (in 1/A)

400 keV
3'1.3A 1.36AI
1 1
I I
0 02 04 06

Spatial Frequency (in 1/A)

ACY

Scale bar: 10 A

Super cell: 5 x 7 unit cells
128 x 128 pixels

Scherzer conditions
white: larger positive number; atoms
should appear black
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ADF STEM images of thin specimen

Obijective lens is before the specimen (see reciprocity theorem)

Transmitted electrons get scattered at high angles to form the ADF signal

Wave function of the focused probe incident upon the specimen at position xp is the integral of the aberration wave function over
the objective aperture:

MK o= maximum angle in the

kmax
vy (X,xp) = Apf exp[—ix(k) —2rik- (X — Xp)]de' objective aperture
0

" Ay: normalization constant
Specimen transfer function:

Vi (X’ Xp) — WP(X’ XP)I(X) 6= interaction parameter
v,(x)= total projected atomic potential

= Y, (X,X,)expliov;(x)]

Transmitted wave function is diffracted into the far field and hits the detector

¥ (k) = FT[y: (x)].

The detector integrates the square modulus of the wave function in the diffraction plane to form the ADF-STEM at this point in the
image

g(xp) = fD(k)‘lﬂ(k’XP)Fde. D(k)= detector function
D(k) =1 on the detector

=0  otherwise.

Probe scans across the specimen - process is repeated for each new position

Detector: large annulus covering only high angle scattering
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Steps in the calculation of ADF-STEM images

Step 1 Calculate the projected atomic potential v,(x) from (5.19) or
(5.21).

Step 2 Calculate the transmission function #(x) = expliov,(x)] (5.25)
and symmetrically bandwidth limit it.

Step 3 Calculate the probe wave function y),(x,x,) at position x,
(5.45,5.47)

Step 4 Multiply the probe wave function by the specimen transmis-
sion function #(x) = expliov,(X)] to get the transmitted wave
function y; (x).

Step 5 Fourier transform the transmitted wave function to get the wave
function 1n the far field (diffraction plane).

Step 6 Integrate the intensity (square modulus) of the wave function
in the diffraction plane including only those portions that fall
on the annular detector (5.50). This is the signal for one point
or pixel in the image.

Step 7 Repeat step 3 through step 6 for each position of the incident
probe x,.
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ADF STEM: Single atom images

Specimen transfer function the same than in ’ v
BF-TEM o

0.008

Line scan through the center

ADF is relative to the incident beam current
BF relative to the incident beam current density

0.006

ADF signal

(incident beam has uniform intensity at all 0.004
positions) o
ADF signal much weaker than the BF singal S zcjz-}wu eV

position x (in Ang)

ADF image shows higher contrast between light and heavy atoms

Peak single atom signal ADF-STEM vs. BF-TEM

ADF-STEM
Z1.5 to Z1.7

single atom peak signal
single atom peak signal

100 keV

104

200 keV 400 keV

10-2} 200 keV

s
10° 10! 102 100 10 102
atomic number Z atomic number Z
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ADF STEM. Thin specimen images

Simulated ADF-STEM images of (110) Si (4 atoms thick) in the WPO approximation

Scale bar: 10 A

¥ Super cell: 5 x 7 unit cells

128 x 128 pixels

Scherzer conditions

white: larger positive number; atoms
should appear white 1
C,= 1.3 mm

\)
09} \'
081
3.13A 1.36A
0.7¢
06

05+t

MTF

MR RRN °""
MR RRN "
MR N

MR NRNRN
MR RRN
RRRRAN
RRRNRN
MR RN
2.0 B -4

400 keV
02¢t N

~ 200 keV
01Ff 100 keV S

ol Teeer
0 01 02 03 04 05 06 07 08 09 1

Spatial Frequency (in 1/A)

Transfer function for an inchorrent
ADF-STEM image under Scherzer
conditions
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Calculation of Im

ADF STEM: Thin specimen images
Simulated ADF-STEM images of (110) Si (4 atoms thick) in the WPO approximation at 100keV

Scale bar: 5 A

Super cell: 5 x 7 unit cells

white: larger positive number; atoms
should appear white

C,=0mm

Oax=35 mrad

Af=0 A
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ADF STEM: Thin specimen images

Tick samples: multiple + geometric extention along the optical axis

- Electron interacts strongly with the sample and can scatter more than once - dynamic scattering

Instrumental aspects: electron microscope + the passage of the elctrons through the microscope are the same

Only difference: specimen

Shortest part, but the most difficult part to calculate, because of the strong interaction of the elctrons with the specimen

2 Theories:

Bloch wave

Wave function of a particle in
periodically repeating potential

1928: Bethe solved 3D eigenvalues of
the electron wave funvtion in a
crystalline specimen

Using appropiate boundary conditions
on the entrance and exit face of the
crystal

Mulitslice Method

Specimen divided into thin 2D slices
along z

Electron beam gets transmitted
through a slice and propagates to the
next slice

Each slice is thin enough to be a
simple phase object and the
propagation between slices is
determined by Frsenel diffraction

Simulation Programs lead to wide spread use of simulation in HR image interpreatation

T. Lunkenbein, FHI



- # ¢ Calculation c

FHI

Bloch waves:

Electron wave function can be expressed by a linear combination of any complete basis set

Using a basis set that also satisfies the Schrodinger equation in the specimen (periodic crystal) are called Bloch waves)

b(k;,r) Expansion of the electron wave

V(x,y,2) = Zaj kjar

Function to Bolch waves

kj: scattering vector on the Ewald sphere

With these Bloch waves any set of coefficients aj are allowed inside the crystal, BUT only one set will also match the incident wave

function

Specimen: converter or filter that converts the incident electrons into a superposition of Bloch waves inside the specimen

INCIDENT
ELECTRONS
plane wave

NANTAYN

Exit Wave

Characteristics of this Bloch waves determine how the electrons travel through the sample.

SPECIMEN

Bloch waves
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Steps in the Bloch wave eigenvalue calculation.

Each Bloch wave must satisfy the Schrédinger equation and is forced to have the periodicity of the specimen:

b;(k;,r) = exp[27ik; -r] ¥, Cg,exp[27iG - 1]
G

= ZCG.i exp[2mi(k;+G) - r].

(1) Calculate the Fourier coefficient (V) of the atomic potential V(r)
h= Planck’s constant

m,= relativistic mass of the elctron Vixy.z) =V(r) = %VG exp[27iG -] 3D- Fourier series
e= magnitude of the charge of the electron 2

a,= Bohr’s atomic radius - L . T

F;= electron scattering factor in the first Born Ve = 2mmge £ Zfe*’ﬂGD exp(—2miG - 1;)

approximation . /

Q= unit cell volume _ tedo (G exp(—27iG -1

j= all atoms in the unit cell Q ;f"’"’(l [exp( )

G=(G,,G,,G,)= (h/a, kib, I/c): reciprocal lattice 47.86

Vectors = =5 2 fei(1G) exp(—27iG 1)),

Cgj= set of coefficient for each Bloch wave j Q F

When the crystal has a symmetry center - for every atom at position r there is an identical atom at position —r and
The terms appear as pairs of complex conjugates making VG real, if not it is complex.

Calculate all VG up to some maximum magnitude of G (scan through integers (h,k,1) and keep all with |V;| > €|V;-,l; e~107°
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Bloch waves:
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Calculation
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(2) Solve for the eigenvalues (proportional to y;) and eigenvectors Cg:

2kos6Cqj+ Y, U nCuj = 2¥jkoCa;
H#G

(3) Find the weighting coefficients o; to match the incident wave function at z=0

Cly(z=0)=C'Ca=a
a=Cly(z=0)=Cy(z=0)

(4) Calculate the electron wave function at the exit surface of the specimen

column vector  W(2) = Clexp(2riy;z)]e

W(x.y.2) = FT5) {2 Ve exp(2iG,2)
G

d¢G(2)
0z

Gf
= 2misgog(z) + iGZVG_G’ o (z)-
GI'

ACY

Sg= excitation error

v; = small term along the beam direction

C= matrix

j= all atoms in the unit cell

G=(G,,G,,G,)= (h/a, kib, I/c): reciprocal lattice
Vectors

Cgj= set of coefficient for each Bloch wave ]
o=weighting coefficient

Wo(z) Coo Coi Coz Cz
vo(2) | _ | Cpo Cor Cp2 Cp3
yE(z) Cro Cg1 Cg2 Cg3
yr(z) Cro Cr1 Cr2 Cp3

S0 00 o

0 e¥nz g 0 o

1o 0 emmzog o

0 0 0 B o

= —7i(2G. + LG + AGY) 96 (2) +i0 Y Vg_g9a (2)
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Bloch waves:

Limitations:

The computer time requiered for a matrix multiplication scales as N2 for the direct solution of a matrix
Large number of beams (>20) a direct matrix (Bloch wave) solution becomes very inefficient

Only 2 or 3 Bloch waves (beams) should be involved - specimen is a perfect crystal with a small unit cell

1045 —_— —_—— — -y

10°¢ Bloch Wave

MS-FFT 500

CPU time (in sec.)

10T

100k MS-FFT 100 5

102 108 104 10% 108
N (number of beams)
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Multislice Solution

Let s start simple:

Vnr1(x,)
J

:\t”(xay) [pn(xayaAZn) ® wn(x,y)] + ﬁ(AZz)

)\ ] L _J

| | | |

wave function
at the top of
each slice transmission

function propagation

function incident

plane
wave

a incident electrons incident electrons

T T T

thick specimen

slices transmit and propagate

At each slice the electron wave function experiences a phase shift due the projected atomic potential of all atoms
And then propagates.

Each slice is idependent of all other slices (slice thickness and transmission function may vary.
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Multislice Solution — Physical optics viewpoint
The propagator function can be associated with the Fresenel (near zone) diffraction over a distance Az
Huygens “principle states that every point of a wave front gives rise to an outgoing spherical wave.
These outgoing spherical waves propagate to the next position of the wavefront and interfere with one another.

The wave function in an x, y plane at z+ Az is the interference of all of these spherically outgoing waves that
originated in an x,y plane at z.

", y") (x,y) (x,y)

transmit T Z
VRSN LA
IESVIEN -7
- - -~
X,y
propagate R
Z
transmit ° z+Az

(x,y)

This propagation of the wave front can be calculated by the Fresnel Kirchhoff diffraction integral

1 2miR /A
]’U(x’yjz—}—Az) = ﬁ/W(x,’y,’Z)%J)(l + cos B)dx’dy’, R = \/(x—x’)z + (y—y!)2 +A22
(£.3,82) = ——exp | 2= (€ +7)

The mulitslice propagator function can be interpreted simply as the Fresnel diffraction over a distance Az = Af .
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Slicing the specimen
Slicing the specimen in a form that it can be used in the multislice program (rectangular)> most difficult part
The specimen must be described as a sequence of layers and spacings in the program.

Each slice must be thin enough to be a weak phase object and perpendicular to the obtical axis
zZ

O y o
O

© O

X
All of the atoms within z to z+ Az are compressed into flat planeor slize at z.

Slice must be aligned with natural periodicity + the edges of the slice (in x,y plane) must have periodic boundary conditions
(in x and y) = Wrap around effect

Many crystalline specimen have identical atomic layers (e.g. (111) Si: stacking sequence of abcabc....)
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Slicing the specimen
Aligning the natural atomic layers of the specimen with the slices can have beneficial side effects.
The atomic potential peaks at the nucleus (singularity) and falls off quickly (1/r dependence)

->The effective range of the potential in the atoms can be smaller than the distance in the layer

The potential is identically O in between the layers (vacuum). The transmission in vacuum is nearly exact - the error occurs only over
the thickness of the layer:

p(xayaAZ) = p(xayaAZ - AZCI) ®p(x7yaAZa)

Multislice equation: transmission + propagator over Az, followd by a propagation over a distance Az- A z,.
The effective error is of order A z, - significantly smaller than total slice thickness A z.

wave function \Pn-l (x,y)

atoms |
vacuum Az

atoms |
Az
vacuum n+]

| atoms |
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Table 6.2 Some image simulation software packages appearing in the literature or on-line

Program Author Year |Type |Comments
SHRLI O’Keefe and Buseck [269] 1978,9 M

TEMPAS Kilaas [194] 1987 M

EMS Stadelmann [335] 1987 |B

NCEMSS O’Keefe and Kilaas [271] 1988 |M
MacTEMPAS [Kilaas [195] ? M  |on-line
TEMSIM Kirkland [205] 1998 (M |CD, on-line
? Ishizuka [178] 2001 |B, M|online

? deGraf [129] 2003 |B online
JEMS Stadelmann [336] 2004 |B, M|online
WebEMAPS |Zuo [334,393] 2005 |B online
EDM Marks et al [235] 2006 |B,M [online
SimulaTEM [Gémez-Rodriguez et al. [123]{2010 |M  |online

Type M is multislice and type B is Bloch-Wave. Some of the listed programs may be commercial.
Many other private programs likely exist

Table 6.3 Steps in the simulation of CTEM images of thick specimens

Step 1 Divide the specimen into thin slices.

Step 2 Calculate the projected atomic potential v,,(x) [(5.19) or
(5.21)] for each slice and symmetrically bandwidth limit them.

Step 3 Calculate the transmission function ,(X) = exp[iGvz,(x)]
(5.25) for each slice and symmetrically bandwidth limit each
to 2/3 of it maximum to prevent aliasing.

Step 4 Initialize the incident wave function y(x,y) = 1.

Step 5 Recursively transmit and propagate the wave function through
cach slice Yi,+1(x.5) = pu(x,3,A2,) ® [t (+.3) 1, (x,)] using
FFT’s as in (6.92). Repeat until the wave function is all the
way through the specimen

Step 6 Fourier transform the wave function at the exit surface of the
specimen ¥, (ke ky) = FT [y, (x, v)].

Step 7 Multiply the transmitted wave function ¥, (k. k,) by the trans-
fer function of the objective lens, Hy(k) (5.27) to get the image
wave function in the back focal plane ¥i(k) = Hy(k)'F, (k).

Step 8 Inverse Fourier transform the image wave function y;(x) =
FT [ (k)]

Step 9 Calculate the square modulus of the image wave function (in
real space) to get the final image intensity g(x) = |y;(x)[> =
|y (%) @ o () .

Table 6.4 Steps in the simulation of STEM images of thick specimens

Step 1

Divide the specimen into thin slices.

Step 2 Calculate the projected atomic potential v, (x) [(5.19) or
(5.21)] for each slice and symmetrically bandwidth limit them.

Step 3 Calculate the transmission function f,(X) = exp[ioVv,(x)]
(5.25) for each slice and symmetrically bandwidth limit each
to 2/3 of it maximum to prevent aliasing.

Step 4 Calculate the probe wave function w,(X.X,) at position X,
(5.45,5.47)

Step 5 Recursively transmit and propagate the probe wave function
through each slice Y11 (x,¥) = pu(x,,A2,) @ [t (x,9) i (x. )]
using FFT’s as in (6.92). Repeat until the wave function is all
the way through the specimen

Step 6 Fourier transform the transmitted wave function to get the wave
function in the far field (diffraction plane).

Step 7 Integrate the intensity (square modulus) of the wave function
in the diffraction plane including only those portions that fall
on the detector (5.50). This is the signal for one point or pixel
in the image.

Step 8 Repeat step 4 through step 7 for each position of the incident
probe x,.

T. Lunkenbein, FHI




The Element
of Surprise!

T. Lunkenbein, FHI



