## **BONDING AND ADSORPTION:**

### THEORETICAL ASPECTS



### **Peter Saalfrank**

Universität Potsdam

# CONTENT, LITERATURE

### • Content

#### 1. Introduction

- 2. Physisorption
  - 2.1 Basic characteristics
  - 2.2 Van der Waals interaction
  - 2.3 Physisorption at metal surfaces
- 3. Chemisorption
  - 3.1 Basic characteristics
  - 3.2 Chemical bonding in molecules
  - 3.3 Chemical bonding at surfaces
  - 3.4 Chemisorption of CO as a case study
- 4. Adsorption from first principles
  - 4.1 Models
  - 4.2 Methods
  - 4.3 A few examples

### • Literature

- 1. A. Groß, "Theoretical Surface Science", Springer Verlag
- 2. S. Holloway and J. Nørskov, "Bonding at Surfaces", Liverpool University Press
- 3. R. Hoffmann, "Solids and Surfaces", Wiley

## 1. Introduction

## • Goals of this lecture

- Understanding why atoms / molecules bind to surfaces
- **2** Understanding how they bind to surfaces, e.g.

Why 
$$\frac{g}{\pi\pi\pi\pi\pi}$$
, ust  $\frac{c-0}{\pi\pi\pi\pi\pi}$ . or  $\frac{c}{\pi\pi\pi\pi\pi}$ ?

**3** Understanding what makes a surface reactive, e.g.

*Insight* rather than quantitative computation

# 1. Introduction (cont'd)

• A few definitions

Adsorbent and adsorbate

Adsorption energy  $E_{ads}$  and free energy  $\Delta G_{ads}$ 

$$E_{ads} = E_{ads. mol.} - (E_{free mol.} + E_{free sub.}) \sim \Delta U_{ads} \sim \Delta H_{ads}$$
$$\Delta G_{ads} = \Delta H_{ads} - T\Delta S_{ads}$$

 $\Delta S_{ads} = \text{entropy change} = S_{ads. mol.} - S_{free} < 0 \text{ mostly}$  $\implies \Delta G_{ads} \text{ is usually less negative than } E_{ads} = \Delta U_{ads}$ 

Here: Adsorption on metal surfaces mostly

### 2. Physisorption

#### 2.1 Basic characteristics

physisorption = "physical adsorption"

Role of adsorbate

Role of surface (He on jellium, DFT) Role of site







## 2. Physisorption (cont'd)

#### 2.2 Van der Waals interaction

| attractive                                                                                                  | repulsive                                    | total                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dispersion<br>$E_{attr} = -\frac{C}{R^6}$ $C = \frac{3}{2} \alpha_A \alpha_B \frac{IP_A IP_B}{IP_A + IP_B}$ | Pauli repulsion $E_{rep} = \frac{A}{R^{12}}$ | Van der Waals interaction<br>$E = \frac{A}{R^{12}} - \frac{C}{R^6}$ or: $E = 4\varepsilon \left\{ \left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right\}$ "12-6 potential" |
| ueutral<br>wolecule A,<br>uo peru. dipole MA<br>Uo MB                                                       | A B                                          | $E = E(F) = 0$ $E(F_{0}) = -E$ $R$ $E(F_{0}) = -E$ $R$ $R$ $E(F_{0}) = -E$ $R$                                                                                |

## 2. Physisorption (cont'd)

#### 2.3 Van der Waals interactions at metal surfaces

By "infinite sum" over surface-atom interactions, one gets

$$E = \frac{A'}{Z^9} - \frac{C'}{Z^3}$$

"9-3 potential"

Oversimplified model calculation for the attractive part (H atom as an example)

$$E_{attr} = e^{2} \left[ -\frac{1}{2Z} - \frac{1}{2(Z-r)} + 2\frac{1}{2Z-r} \right]$$
  
=  $e^{2} \left[ \frac{-2(Z-r)(2Z-r) - 2Z(2Z-r) + 8Z(Z-r)}{4Z(Z-r)(2Z-r)} \right] = -\frac{e^{2}}{2} \left[ \frac{r^{2}}{Z(Z-r)(2Z-r)} \right]$ 

In the limit  $Z \gg r$  (far from surface):  $\lim_{Z \gg r} E_{attr} = -\frac{e^2}{4} \frac{r^2}{Z^3}$ 

## 3. Chemisorption

#### **3.1 Basic characteristics**

chemisorption = "chemical adsorption"

Specifity\*:

| specifity              | example                                              |
|------------------------|------------------------------------------------------|
| molecule: type         | ###<br>                                              |
| wolecule : orientation | miterra, ust Stantin,                                |
| suface : type          | ATB<br>ATB<br>ATB<br>ATB<br>ATB<br>ATB<br>ATB<br>ATB |
| Surface : judex        | ATB, wot TITTITT,<br>(100) (111)                     |
| Surface : site         | "Ou-top" "bridge" "kollow"                           |

### 3.2 Chemical bonding in molecules

### (1) LCAO-MO theory: The symmetric 2-orbital problem

- Solve electronic Schrödinger equation  $|\hat{H}_{el}\psi_{el} = E_{el}\psi_{el}|$  within LCAO-MO
- For 2 atoms, 1 orbital  $\varphi$  (AO) each (e.g. H(1s)), ansatz for wavefunction (MO)

$$\psi_{el} = C_A \varphi_A + C_B \varphi_B \qquad C_A, C_B = \text{coefficients}$$

• In the symmetric orbital case (e.g.,  $H_2$ ), the SE has two solutions



with  $H_{AA} = \langle \varphi_A | \hat{H}_{el} | \varphi_A \rangle = H_{BB}, \ H_{AB} = \langle \varphi_A | \hat{H}_{el} | \varphi_B \rangle, \ S = \langle \varphi_A | \varphi_B \rangle$  (overlap integral)

• Discussion:

•  $\Delta_{-}/\Delta_{+} = (1+S)/(1-S) > 1$ • occupation n = 0: no effect

occupation n = 1, 2: stabilizing

occupation n = 4: destabilizing

## 3.2 Chemical bonding in molecules (cont'd)

#### (2) LCAO-MO theory: The asymmetric 2-orbital problem

• For asymmetric orbital case  $(A \neq B, 1 \text{ orbital each, e.g. H-He})$ :



• **Discussion:** • **O** occupation n = 1, 2: stabilizing occupation n = 4: destabilizing

 $\mathbf{2} \psi_1$  is "B-like",  $\psi_2$  is "A-like" (B=more electronegative)

- **3** 2nd order PT:  $\Delta_1^{(2)} = |H_{AB}|^2 / (H_{AA} H_{BB})$ 
  - $\Delta_1$  (mixing) small, if  $|H_{AA} H_{BB}|$  large
  - $\Delta_1$  small, if  $H_{AB}$  small or zero note:  $H_{AB} \sim KS(H_{AA} + H_{BB})$  (Wolfsberg-Helmholtz)

## 3.2 Chemical bonding in molecules (cont'd)

(3) LCAO-MO theory: The N-orbital, 2-atom problem



- **Discussion:** • **1** (LUMO A / HOMO B) > 2 (LUMO B / HOMO A)  $\gg$  3  $(H_{L_AL_A} - H_{H_BH_B}) < (H_{L_BL_B} - H_{H_AH_A}) < (H_{i_Bi_B} - H_{j_Aj_A})$ 
  - Interactions between close-lying empty orbitals (n=0) or full orbitals (n=4) have no effect or are non-bonding
  - HOMO-LUMO interactions control interatomic interactions

frontier orbital perspective

### 3.3 Chemical bonding at surfaces

### (1) A simple model for a metal surface: Bands

• Energetic picture: Metal vs. semiconductor / insulator



• Density of states (DOS) for metals



• Surfaces: Energetic / spatial picture



(2) Chemical adsorption: Orbital interaction picture



| type                      | energetic effect       | other effects                                  |
|---------------------------|------------------------|------------------------------------------------|
| <b>3</b> 2e-2 "orbital"   | stabilizing            | $A \rightarrow surface CT; A-S bond formation$ |
| <b>2</b> 2e-2 "orbital"   | stabilizing            | surface $\rightarrow$ A CT; A-S bond formation |
| $\bigcirc$ 0e-2 "orbital" | weakly stabilizing     | surface $\rightarrow$ A CT; A-S bond formation |
|                           |                        |                                                |
| 4 4e-2 "orbital"          | slightly destabilizing | $A \rightarrow surface CT; A-S bond formation$ |
|                           | A A                    |                                                |

A-surface bonds tend to form easier than A-B bonds

(2) Chemical adsorption:Energetic / spatial pictureCase 1: Single-level atoms

Adsorption of Li, Si, Cl on "jellium": Lang, Williams, PRB **18**, 616 (1978)



(2) Chemical adsorption: Energetic / spatial picture Case 1: Single-level atoms, a distance-dependent, closer look



Example: H<sup>+</sup> on jellium (PRB **18**, 616 (1978))



(Lorentzian) resonance width:  $\Delta E = \frac{h}{\tau}$  $\tau = \text{tunneling time}$ 

### (2) Chemical adsorption: Energetic / spatial picture Case 2: Molecules

example:  $H_2$  / metal surface



- weakening of H-H (A-B) bond
- strengthening of H-surface bond

LUMO (A) often dominates interaction

• A slight refinement of the energetic / spatial picture



## 3.4 Chemisorption of CO as a case study

### (1) General binding mechanism





MOs of 
$$N_2$$
 and CO:



## 3.4 Chemisorption of CO as a case study

#### (1) General binding mechanism: CO bonding in TM complexes

dominant interactions:

| type           | 0                                                      | Ø                                                    |
|----------------|--------------------------------------------------------|------------------------------------------------------|
|                | o<br>≅c<br>⊖<br>MLn                                    |                                                      |
| wetal orbitals | $d_{5}^{"}: d_{2}^{2}, S, P_{2}$                       | $d_{\pi} = d_{xz1} d_{yz}$                           |
| CO orbitals    | 55 : devor                                             | 211+ : acceptor                                      |
| action         | CO-> M CT<br>(weatens CO boud)<br>strengthens M-C boud | M-> CO CT<br>weatens CO boud<br>strangthens H-C boud |

more complete picture:



(1) General binding mechanism: CO bonding to TM surfaces

dominant interactions:



Blyholder model

- Consequences of synergetic bonding mechanism
  - 1. C-O bond weakening
    - C-O bond becomes longer
    - $\bullet$  C-O stretch frequency  $\tilde{\nu}$  becomes smaller
  - 2. M-C bond formation
  - 3. Approximate charge neutrality
  - 4. Consequences
    - linear upright orientation of CO
    - binding via C to M, not O to M



•  $c(2 \times 2)$  CO-Ni(100): (Extended Hückel) Charges

| ONI "on top" |                                 | free co + free                               | 2 Ni (100)                                  | c(2x2)Co-Ni(100)                               | Δ                                 |
|--------------|---------------------------------|----------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------|
|              | 0                               | n (50)<br>n (211*)<br>N 60t<br>V (exp.)      | 2.0<br>0.0<br>14.0<br>2143 cm <sup>-1</sup> | 1.43<br>0.74<br>14.25<br>2069 cm <sup>-1</sup> | -0.38<br>+0.74<br>+0.25<br>-74 cm |
|              | Ni<br>(which<br>birds<br>to co) | $n(d_{\sigma})$<br>$n(d_{\pi})$<br>$n_{tot}$ | 1-93<br>3.81<br>28.17                       | 1.43<br>3.31<br>27. 37                         | -0.50<br>-0.50<br>-0.80           |

• c(2×2)CO-Ni(100): Density of states (EHT calculation)



• Other adsorption sites: CO/Ni(100)



- more metal atoms
- stronger back-donation, weaker C-O bond, smaller  $\tilde{\nu}$
- analogy metal carbonyls

### (3) Trends in CO chemisorption

- Effect of adsorption site: Large coordination  $\implies$  weak C-O bond
- Effect of crystal face: Effect of workfunction  $\Phi$ (or Fermi energy  $E_F$ )



Example: CO on various Ni faces (EHT results)



### (3) Trends in CO chemisorption

• Effect of metal type:



Trends for transition metals (from  $Ti \rightarrow Ni$ ):

- Increasing  $Z \Longrightarrow$ more contracted d-orbitals
- 2 Increasing  $Z \Longrightarrow$ higher ionization potential (lower  $E_F$ , larger  $\Phi$ )

early TM more reactive

#### Charges for TM/CO (EHT calculation)

| metal              | Ti (0001)     | G(110)       | Fe(110)      | G(0001)      | Ni(100)      | Ni(III)      |
|--------------------|---------------|--------------|--------------|--------------|--------------|--------------|
| n (55)<br>n (217*) | 1.73<br>(. G( | 1.67<br>0.74 | (.62<br>0.54 | 1.60<br>0.43 | (.60<br>0.39 | 1.59<br>0.40 |
| и (211*)           | 1.61          | 0.74         | 0.54         | 0.43         | 0.39         | 0.40         |

#### (3) Trends in CO chemisorption

• Breaking C-O bonds:



#### Binding energies



# 4. Adsorption from "first principles"

## 4.1 Models

# (1) Cluster models

e.g.  $H_2O/Al_9$ 



# (2) Periodic models



| advantages                   | disadvantages        |
|------------------------------|----------------------|
| • molecular                  | • boundary effects   |
| $\implies$ quantum chemistry | $\implies$ embedding |
| • excited states             | • which cluster?     |
| • good for insulators,       | • bad for metals     |
| semiconductors               |                      |

| advantages              | disadvantages           |
|-------------------------|-------------------------|
| • no lateral boundaries | • low coverage          |
| • faster convergence    | • impurities            |
| • high coverage         | • excited states        |
| • metals: $D(E_F)$      | • periodicity along $z$ |

Baerends et al., Chem. Phys. 177, 399 (1993)

## 4.2 Electronic structure methods

# (1) Overview over methods

Electronic Schrödinger equation:

Potential energy surfaces:

 $\hat{H}_{el}\Psi_{el,n}(r,R) = E_{el,n}(R) \ \Psi_{el,n}(r,R)$ 

 $V_n(R) = E_{el,n}(R) + V_{nuc,nuc}(R)$ 

 $r = \text{electronic}, R = \text{nuclear DOF}, n = \text{state}, E_{el} = \text{electronic energy}, V_{nuc,nuc} = \text{nuclear repulsion}$ 



## (2) Dispersion forces and other non-bonded interactions





#### • Methods for non-bonded interactions

| rank   | method  | (type)    | HB   | CT   | DI   | WI   | average        |
|--------|---------|-----------|------|------|------|------|----------------|
| 1      | MPWB1K  | (m-h-GGA) | 0.61 | 0.50 | 0.52 | 0.22 | 0.46           |
| 2      | MP2     | (WFT)     | 0.66 | 0.60 | 0.55 | 0.16 | 0.49           |
| 16     | B3LYP   | (h-GGA)   | 0.77 | 0.80 | 0.78 | 0.60 | 0.74           |
| 31     | PBE     | (GGA)     | 0.50 | 2.94 | 0.49 | 0.28 | 1.05           |
| 44     | SVWN5   | (LDA)     | 4.63 | 6.73 | 2.93 | 0.40 | 3.67           |
|        | average |           | 1.28 | 1.78 | 0.92 | 0.56 | 1.14           |
| TTD TT |         | 1 / (     | DI   | 1. 1 | • 1  |      | <b>T T</b> 7 T |

HB=H-bonded; CT=charge transfer; DI=dipolar interactions; WI=weak interactions; MAD (kcal/mol), 22 data sets; Truhlar JCTC 1, 415 (2005)

• The DFT+D method(s) for weak interactions

 $E_{\rm DFT-D} = E_{\rm DFT} + E_{\rm disp}$ 

Example: Dissociation energies (meV) of 2 graphene layers

$$E_{\rm disp} = -C_6/R^6 - C_8/R^8 - C_{10}/R^{10}\cdots$$

Example: Grimme D2 correction



| functional                     | DFT | DFT-D2 | DFT-D3 |  |  |
|--------------------------------|-----|--------|--------|--|--|
| BLYP                           | -29 | 62     | 59     |  |  |
| RPBE                           | -31 | 65     | 55     |  |  |
| PBE                            | -1  | 47     | 41     |  |  |
| exp. $52 \pm 5$                |     |        |        |  |  |
| JCP <b>132</b> , 154104 (2010) |     |        |        |  |  |

## 4.3 A few selected examples

### (1) H atoms at Pd low-index surfaces

• Site, coverage, index dependence



0=1



Groß, "Theoretical Surface Science"



c) missing-row reconstruction

b)  $(2 \times 1)$  unreconstructed



d) pairing-row reconstruction

(2) Trends: Hammer-Nørskov model for adsorption on transition metals
• Chemisorption energy: d-band contribution (atoms)

 $E_{d-hyb} = -2(1-f)\frac{V^2}{|\varepsilon_d - \varepsilon_a|} + \alpha V^2$ 

f = d-band filling  $\varepsilon_{d,a} = d$ -band centre, adsorbate level V=coupling adsorbate level / d-band  $\alpha = \text{constant}$ 

#### • First principles vs. model expression



Ann. Rev. Phys. Chem. **53**, 319 (2002)

## 4.3 A few selected examples (cont'd)

### (3) Adsorption on structured surfaces

#### • Stepped and structured surfaces



• CO adsorption on stepped CO/Pt(11,7,5) kink sites



 $\Delta E_{ads}(\text{Pt}(11,7,5), \text{Pt}(111)) \sim 0.7 \text{ eV}$ 

defects / kinks are more reactive

can be explained by d-band model



#### (4) Steps of ammonia synthesis

#### • Reaction:



 $\implies$  step (1) is rate-limiting

• Stationary points for (1):  $N_2/Ru(0001)$ 



Nørskov et al., Ann. Rev. Phys. Chem. 53, 319 (2002)

## A few selected examples (cont'd)

### (5) Activated, dissociative adsorption: Lennard-Jones picture

diabatic picture

adiabatic picture



- chemisorption curve
- **2** physisorption curve
- **3** chemisorption minimum
- physisorption minimum
- **5** barrier to dissociation
- **6** dissociation energy in gas phase

particles follow adiabatic potential

(if not too fast)

## Summary and outlook

## • Summary

- Physisorption and chemisorption
- Chemisorption: Affinity level matters
- Chemisorption: (Metal) Fermi energy matters
- Molecules: Molecular & dissociative adsorption

# • Outlook

- Potential energy surfaces
- Reaction dynamics
- Reaction kinetics
- Heterogeneous catalysis