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➊ Understanding why atoms / molecules bind to surfaces

➋ Understanding how they bind to surfaces, e.g.

➌ Understanding what makes a surface reactive, e.g.

Insight rather than quantitative computation

• Goals of this lecture

1. Introduction



Adsorbent and adsorbate

Adsorption energy Eads and free energy ∆Gads

Eads = Eads. mol. − (Efree mol. + Efree sub.) ∼ ∆Uads ∼ ∆Hads

∆Gads = ∆Hads − T∆Sads

∆Sads = entropy change = Sads. mol. − Sfree < 0 mostly
=⇒ ∆Gads is usually less negative than Eads = ∆Uads

Here: Adsorption on metal surfaces mostly

• A few definitions

1. Introduction (cont’d)



Role of adsorbate Role of surface Role of site
(He on jellium, DFT)

physisorption = “physical adsorption”

2.1 Basic characteristics

2. Physisorption



2.2 Van der Waals interaction

attractive repulsive total
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2. Physisorption (cont’d)
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Oversimplified model calculation for the attractive part (H atom as an example)

By “infinite sum” over surface-atom interactions, one gets
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“9-3 potential”

2.3 Van der Waals interactions at metal surfaces

2. Physisorption (cont’d)



Specifity*:

chemisorption = “chemical adsorption”

3.1 Basic characteristics

3. Chemisorption



➊ ∆−/∆+ = (1 + S)/(1− S) > 1

➋ occupation n = 0: no effect
occupation n = 1, 2: stabilizing
occupation n = 4: destabilizing

• Solve electronic Schrödinger equation Ĥelψel = Eelψel within LCAO-MO

• For 2 atoms, 1 orbital ϕ (AO) each (e.g. H(1s)), ansatz for wavefunction (MO)

ψel = CAϕA + CBϕB CA, CB = coefficients

• In the symmetric orbital case (e.g., H2), the SE has two solutions

with HAA = 〈ϕA|Ĥel|ϕA〉 = HBB, HAB = 〈ϕA|Ĥel|ϕB〉, S = 〈ϕA|ϕB〉 (overlap integral)

• Discussion:

(1) LCAO-MO theory: The symmetric 2-orbital problem

3.2 Chemical bonding in molecules



➊ occupation n = 1, 2: stabilizing
occupation n = 4: destabilizing

➋ ψ1 is “B-like”, ψ2 is “A-like” (B=more electronegative)

➌ 2nd order PT: ∆
(2)
1 = |HAB|

2/(HAA −HBB)

• ∆1 (mixing) small, if |HAA −HBB| large

• ∆1 small, if HAB small or zero

note: HAB ∼ KS(HAA +HBB) (Wolfsberg-Helmholtz)

• For asymmetric orbital case (A 6= B, 1 orbital each, e.g. H-He):

• Discussion:

(2) LCAO-MO theory: The asymmetric 2-orbital problem

3.2 Chemical bonding in molecules (cont’d)



• ➀ (LUMO A / HOMO B) > ➁ (LUMO B / HOMO A) ≫ ➂

(HLALA −HHBHB) < (HLBLB −HHAHA) < (HiBiB −HjAjA)

• Interactions between close-lying empty orbitals (n=0) or full or-
bitals (n=4) have no effect or are non-bonding

• HOMO-LUMO interactions control interatomic interactions

frontier orbital perspective

• Discussion:

(3) LCAO-MO theory: The N-orbital, 2-atom problem

3.2 Chemical bonding in molecules (cont’d)



• Energetic picture: Metal vs. semiconductor / insulator

• Density of states (DOS) for metals

• Surfaces: Energetic / spatial picture

(1) A simple model for a metal surface: Bands

3.3 Chemical bonding at surfaces



type energetic effect other effects
➂ 2e-2 “orbital” stabilizing A → surface CT; A-S bond formation
➁ 2e-2 “orbital” stabilizing surface → A CT; A-S bond formation
➀ 0e-2 “orbital” weakly stabilizing surface → A CT; A-S bond formation

➃ 4e-2 “orbital” slightly destabilizing A → surface CT; A-S bond formation

A-surface bonds tend to form easier than A-B bonds

Orbital interaction picture
(2) Chemical adsorption:

3.3 Chemical bonding at surfaces (cont’d)



Lang, Williams, PRB 18, 616 (1978)

Adsorption of Li, Si, Cl on “jellium”:

Case 1: Single-level atoms

Energetic / spatial picture

(2) Chemical adsorption:

3.3 Chemical bonding at surfaces (cont’d)



τ =tunneling time
(Lorentzian) resonance width: ∆E =

h

τ

Example: H+ on jellium (PRB 18, 616 (1978))

εa ∼ ε∞a − 1/4Z

∆E ∝ e−λZ

acceptor levels shift and broaden

Case 1: Single-level atoms, a distance-dependent, closer look

(2) Chemical adsorption: Energetic / spatial picture

3.3 Chemical bonding at surfaces (cont’d)



• A slight refinement of the energetic / spatial picture

• weakening of H-H (A-B) bond

• strengthening of H-surface bond

LUMO (A) often dominates interaction

example: H2 / metal surface

Case 2: Molecules

(2) Chemical adsorption: Energetic / spatial picture

3.3 Chemical bonding at surfaces (cont’d)



MOs of N2 and CO:

a useful analogy:

(1) General binding mechanism

3.4 Chemisorption of CO as a case study



more complete picture:

dominant interactions:

(1) General binding mechanism: CO bonding in TM complexes

3.4 Chemisorption of CO as a case study



1. C-O bond weakening

• C-O bond becomes longer
• C-O stretch frequency ν̃ becomes smaller

2. M-C bond formation

3. Approximate charge neutrality

4. Consequences

• linear upright orientation of CO
• binding via C to M, not O to M

• Consequences of synergetic bonding mechanism

Blyholder model

dominant interactions:

(1) General binding mechanism: CO bonding to TM surfaces

3.4 Chemisorption of CO as a case study (cont’d)



• c(2×2) CO-Ni(100): (Extended Hückel) Charges

(face centered cubic, fcc)

• Cuts through metal surfaces

(2) Example: CO on Ni(100)

3.4 Chemisorption of CO as a case study (cnt’d)



• more metal atoms

• stronger back-donation,
weaker C-O bond, smaller ν̃

• analogy metal carbonyls

• Other adsorption sites: CO/Ni(100)

• c(2×2)CO-Ni(100): Density of states (EHT calculation)

3.4 Chemisorption of CO as a case study (cont’d)



(EHT results)
Example: CO on various Ni faces

(or Fermi energy EF )
Effect of workfunction Φ

• Effect of crystal face:

• Effect of adsorption site: Large coordination =⇒ weak C-O bond

(3) Trends in CO chemisorption

3.4 Chemisorption of CO as a case study (cont’d)



Charges for TM/CO (EHT calculation)

early TM more reactive

Trends for transition metals (from Ti → Ni):

➊ Increasing Z =⇒
more contracted d-orbitals

➋ Increasing Z =⇒
higher ionization potential (lower EF , larger Φ)

• Effect of metal type:

(3) Trends in CO chemisorption

3.4 Chemisorption of CO as a case study (cont’d)



approximate relation:
∆Hads ∼ M → 2π∗ back-donation

Binding energies

• Breaking C-O bonds:

(3) Trends in CO chemisorption

3.4 Chemisorption of CO as a case study (cont’d)



Baerends et al., Chem. Phys. 177, 399 (1993)

advantages disadvantages

• no lateral boundaries • low coverage

• faster convergence • impurities

• high coverage • excited states

• metals: D(EF ) • periodicity along z

slab models supercell models

(2) Periodic models

advantages disadvantages

• molecular • boundary effects

=⇒ quantum chemistry =⇒ embedding

• excited states • which cluster?

• good for insulators, • bad for metals

semiconductors

e.g. H2O/Al9

(1) Cluster models

4.1 Models

4. Adsorption from “first principles”



electronic
structure

based
wavefunction density

based

semi−
empirical

first
principles

DFT
Kohn−Sham

many−body
corrections

ab initio

Hartree−
Fock (HF)

post−HF

semi−
empirical

HMO, EHT, CNDO,
AM1, ....

GW

LDA, GGA,
B3LYP, ....

CI, MPn, CC, CASSCF, ....

EAM, TBDFT

r = electronic, R = nuclear DOF, n = state, Eel= electronic energy, Vnuc,nuc = nuclear repulsion

Potential energy surfaces:

Vn(R) = Eel,n(R) + Vnuc,nuc(R)

Electronic Schrödinger equation:

ĤelΨel,n(r, R) = Eel,n(R) Ψel,n(r, R)

(1) Overview over methods

4.2 Electronic structure methods



Example: Dissociation energies (meV) of 2 graphene layers

functional DFT DFT-D2 DFT-D3

BLYP -29 62 59

RPBE -31 65 55

PBE -1 47 41

exp. 52 ± 5
JCP 132, 154104 (2010)

Example: Grimme D2 correction

ED2
disp = −s6

NA
∑

A

NA
∑

B>A

CAB
6

R6
AB

fd(RAB)

Edisp = −C6/R
6 − C8/R

8 − C10/R
10 · · ·

EDFT-D = EDFT + Edisp

• The DFT+D method(s) for weak interactions

• Methods for non-bonded interactions

rank method (type) HB CT DI WI average

1 MPWB1K (m-h-GGA) 0.61 0.50 0.52 0.22 0.46

2 MP2 (WFT) 0.66 0.60 0.55 0.16 0.49

16 B3LYP (h-GGA) 0.77 0.80 0.78 0.60 0.74

31 PBE (GGA) 0.50 2.94 0.49 0.28 1.05

44 SVWN5 (LDA) 4.63 6.73 2.93 0.40 3.67

average 1.28 1.78 0.92 0.56 1.14
HB=H-bonded; CT=charge transfer; DI=dipolar interactions; WI=weak
interactions; MAD (kcal/mol), 22 data sets; Truhlar JCTC 1, 415 (2005)

• Potential curve of Ar-Ar
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(2) Dispersion forces and other non-bonded interactions

4.2 Electronic structure methods (cont’d)



for H/Pd(100)

Groß, “Theoretical Surface Science”

• Surface reconstruction

• Site, coverage, index dependence

(1) H atoms at Pd low-index surfaces

4.3 A few selected examples



CO adsorptionO adsorption

Ann. Rev. Phys. Chem. 53, 319 (2002)

• First principles vs. model expression

Ed−hyb = −2(1− f )
V 2

|εd − εa|
+ αV 2

f = d-band filling V=coupling adsorbate level / d-band
εd,a = d-band centre, adsorbate level α = constant

• Chemisorption energy: d-band contribution (atoms)

(2) Trends: Hammer-Nørskov model for adsorption on transition metals

4.3 A few selected examples (cont’d)



∆Eads(Pt(11,7,5), Pt(111))∼ 0.7 eV

defects / kinks are more reactive

can be explained by d-band model

• CO adsorption on stepped CO/Pt(11,7,5) kink sites

(755) surface(911) surface

• Stepped and structured surfaces

(3) Adsorption on structured surfaces

4.3 A few selected examples (cont’d)



Ann. Rev. Phys. Chem. 53, 319 (2002)

• Further examples

(3) Adsorption on structured surfaces

4.3 A few selected examples (cont’d)



Nørskov et al., Ann. Rev. Phys. Chem. 53, 319 (2002)

=⇒ reaction proceeds at steps

• Stationary points for (1): N2/Ru(0001)

=⇒ step (1) is rate-limiting

• Reaction:

N2 + 3 H2

surface, p, T
⇋ 2 NH3

(4) Steps of ammonia synthesis

4.3 A few selected examples (cont’d)



(if not too fast)

particles follow adiabatic potential

➊ chemisorption curve

➋ physisorption curve

➌ chemisorption minimum

➍ physisorption minimum

➎ barrier to dissociation

➏ dissociation energy in gas phase

diabatic picture adiabatic picture

(5) Activated, dissociative adsorption: Lennard-Jones picture

A few selected examples (cont’d)



• Potential energy surfaces

• Reaction dynamics

• Reaction kinetics

• Heterogeneous catalysis

• Outlook

• Physisorption and chemisorption

• Chemisorption: Affinity level matters

• Chemisorption: (Metal) Fermi energy matters

•Molecules: Molecular & dissociative adsorption

• Summary

Summary and outlook


