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Modern

Catalysis Is since over a century an enabling
science and technology.

It emerges from synthetic chemistry (catalysts
and new molecules) and from physical
chemistry (course of a chemical reaction,
guantum theory).

More than 10 Nobel awards were devoted.
As an independent science still problematic:
Concepts, models, gaps, “real systems”
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Systems: C1 chemistry
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Motivation

* Despite its enabling role and several
disciplinary attempts:
— Chemical engineering
— Surface science and theory
— Combinatorial chemistry

o Catalysis is still an empirical science.
 Modern motivation: the energy challenge.

 Program:
— The energy challenge
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Structure of a challenge
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FHI Possible realization and critical elements
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FHI Dynamics of Pt in OER
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Alternatives
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FHI Summary electrolysis {7~ )
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* Problems with switching stability, over-potentials
and use of non-sustainable materials.

e OER is the critical reaction.

* Electro-catalysts are dynamical and transform in-
situ (learn from chlorine electrolysis).

« Stability and scalabllity are critical design
parameters for second generation systems.

o Lack of solid fundamental understanding of electro-
catalytic processes and their material requirements
(empirical optimization less likely to be sufficient).



Energy supply: a systemic challenge
Catalysis is the core technology
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reaction network of a “simple” hydrogenation ”\@‘:ﬁ;/
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Ni, Co, Fe...

Control variables: _ °

Oxophilicity of active site =
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Performance is not facile,

No complete hydrogen conversion,
Side products unclear
Carbon deposition

« Complex NP can
replace noble metals.

o Stability above 24 h is
unknown.
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. Carbon deposition as prime problem
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Deposition of carbon limits catalyst
performance: loss of active phase
through CNT formation.

Protection through carbide formation:
labile under reaction conditions:
catalyst design allowing for facile
carbon dissolution.




Dynamics of Ni under hydrogenation conditions
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Summary el
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« High performance systems contain non-sustainable
noble metals.

 Base metal systems insufficient in stability and
performance (mind educt purity: CO,!).

o Complex material dynamics from reaction network
activated.

o Gas purification for enduser gas distribution system
despite high (90%) selectivity reduces efficiency
and drives cost.

« Material and process development needed after
verification of fundamental reaction understanding.



Concepts

e Catalysis Is a science based on concepts
that are partly founded in theory.

* This well-founded part Is the result of
surface science and of quantum theory
and Is valid for processes with adsorption /

activation as rate-controlling step without
selectivity.

e Catalysis Is a multi-scale phenomenon
and requires thus simultaneous research

llllllllllllllll In several chemical disciplines.
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Catalysis Is a multi-scale phenomenon
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Concepts

The concepts developed differently in the disciplines
of catalysis:

— Homogeneous
— Heterogeneous
— Biological.

Common to all: catalysis is a kinetic effect and
cannot modify thermodynamic limits.

Consequence: catalysts are non-equilibrium
systems.

They contain only few functional sites in a matrix of
stabilizing species!
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Heterogeneous catalysis

 Two concepts for active sites:

— Mean field approximation: all sites are equal and
all geometric sites are active (Langmuir model).

— Active sites are embedded in non-active surface
sites allowing adsorption (checkerboard model,
Taylor model).

o All theory and most model systems operate
with the Langmuir model, Taylor model mostly
gualitative: CO oxidation, gold catalysis:
“perimeter models”.
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Activity and selectivity

o Catalyst quality according to yield per unit
— Mass: well measurable
— Total surface area: more realistic
— Active surface area: sometimes possible
— Active site most desired: not countable (tof concept)

 No absolute measure possible for any
catalyst today!!

o Selectivity is fraction of atoms (!!) from feed
that are found in the desired product:
— Analytical accuracy and definition ambiguities.

AC)
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Catalytic activity in what units?

CO oxidation over 2% Pd/Fe,O,
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Basic concepts

o Catalysts bring together reactants by
adsorption.

» At special high energy sites (“active sites”)
adsorbates can react (exchange atoms in
molecular entities).

« Catalysts operate cyclically recuperating the
active site.

* Excessive strength of adsorption kills
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he standard model (Langmuilr,

aylor, Ertl)

A heterogeneous catalyst can be approximated

by a single crystal surface.

No compound of the catalyst with its reactants.
The terminating atoms are all equal and active.

Adsorption strength may change this: perimeter
of islands in CO oxidation; (dynamics).

Surface atoms can be defined precisely with

atom co-ordinates.

They can be studied by surface science

structural tools.
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Function of a catalyst: Static SM

E a uncatalyzed reaction 3
'
reactants surface-
adsorbate

complex products

:
reaction

O

Bulk IS “irrelevant”, no chemical transformations sub-surface

AC)
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Application: energy storage
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FHI Modern concept (?): scaling relations e )
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« A catalytic reaction is given by the abllity of a
catalyst to activate reactants:

e Optimum between strength of adsorption and heat
of reaction: the Sabatier (Tamaru) principle.

e Modern version the “vulcano” trend.

e Concept allows predictions of catalytic reactivity
from simplified theories.

o Offering the chance to “test” many catalysts by
computation rather than by experimental screening.

 Reduction of the search space for potent catalysts.



Example: CO methanation
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REVIEW ARTICLE

PUBLISHED OMNLINE: 19 MARCH 2009| DO 10,103

Towards the computational design of
solid catalysts

J. K. Nerskov™, T. Bligaard', J. Rossmeis!' and C. H. Christensen®

Reactant adsorption energy (V)

Stability and decomposition kinetics

Metal cost (% per kg)

d
® gBe @ p
o
10,000 Pd 014 1
Pd.Ag pd@ ” 4-- 100% Ni i
AS £ 0127 - ¢ 45% Ni 55% Zn ; {4
s s | -« 35%Ni 67% Zn 4 i
E 0107 - w-- 100% Pd ‘ T
- E 0og < 25%Pd 75% Ag y T
Ni § | * 25%Ni 75%Zn ; ¥ ;
NisZno @2 o :
a
FeZn ¥
1 4 z
selectivity

N | 1 I ' L
-1.4 -1.2 10 -08 -06
Methyl adsorption energy (eV) Conversion of acetylene (%)
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 We consider individual mechanistic processes.
e Desire for single molecule spectroscopy (SPM).

 We observe 1017 (1010 planets of humans)
simultaneous events:

e Can there be a unigue relation?

o Statistics: distribution of properties leads to
distributions of reaction pathways:

 Beware of using the term “mechanism”.

* In homogeneous systems the distribution of
properties is much narrower.



Model systems

e are “real” (contrast to high performance
systems) but are usually not functional.

e serve as static counterpart for reacting systems.
e are evaluated with simplified reactions.

e are used under conditions (low T, low p) that
minimize substrate adsorbate and adsorbate-
adsorbate Interactions.

e are made to a maximum structural definition
(equals minimal reactivity).
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Model reactions
Structure effects

Pentenes to pentane

Hydrogenation
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Active sites

The central concept in all types of catalysis.

Act as coordination centres allowing to exchange
adsorbates (fragments) and electrons (oxidation
state).

Are modified during chemical bond rearrangement.

In a catalytic cycle they are regenerated In to their
most active initial state.

Adaptivity required as mostly the reaction product Is
more reactive than the starting species: selectivity
through autogenous partial deactivation.
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Selective oxidation:
Coupling of transformation and material
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It IS Inadequate to concentrate on the
“reaction”

fast reaction, "synthesis"

active site
to des-

activated

site

educts
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products

cyclic activation, fast
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stabilization
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matrix re-

structuring Reaction dynamics

Paralleled by
Material dynamics
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Reaction pathway catalyst
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Reaction networks:
A catalyst activates it all!
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Numerical models

Microkinetics with a set of elementary steps derived
from surface science experiments

|dentification of the rds from energetics

Ab-inito calculation of critical steps and their
transition states

Incorporation of experimental values from key steps
(adsorption, activation)

Prediction of rates from statistical methods

Comparison with experiments (see textbook
Chorkendorff and Niemantsverdriet)

In fortunate cases hierarchical theoretical models
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reagents
The mean field

Reaction pathways

CENTER FOR INTERFACE SCIENCE AND CATALYSIS
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Macrokinetic descriptions: transport
and atomistic processes?
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Fig- 3 Transition from the kinetic regime to the diffusion-
controlled regime of a heterogeneous catalytic fluid—solid reaction
carried out on a porous catalyst.
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Modern: The generic innovation

We can follow the dynamics of catalysts.
In-situ (not “operando”) spectroscopy.

Precison structural analysis (high-energy
sites).

Allow catalysts to respond to the chemical
potential of the reactants:

Catalysts activate themselves!!

Do not attempt to design active structures too
reactive as activation will damage the system.
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A research approach (both for models

and high performance systems)
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Summary
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Conclusions

We understand concepts of catalysis such as active sites,
adsorption, checkerboard structures.

We have guantitative models for simple cases where no
selectivity occurs and where dynamics does not change
structure in the window of relevant parameters.

The chemical complexity of active sites in demanding
reactions and the absence of a general model that couples
properties of catalyst and reactants are missing for a
design of catalysis.

More empirical work is less useful than conceptual work
mapping out the essence of complexity.
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Dem Anwenden muss das Erkennen vorausgehen

Max Planck
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