Basic electrochemical techniques in energy research

Chinmoy Ranjan FHI-AC 3-Feb-2012

Electrochemistry

- Biological electron transfer reactions: Life sustaining processes: Respiration, photosynthesis.
- Energy storage and conversion: Water splitting, Batteries, fuel cells.

Central Role of Electrochemistry

CENTRAL ROLE OF ELECTROCHEMICAL WATER SPLITTING IN A SUSTAINABLE ENERGY FUTURE

Fuel Cell

Proton Exchange Membrane

Water Splitting

ELECTROCHEMCAL HALF REACTIONS

 $2H_2O \longrightarrow 4H^+ + O_2 + 4e^- E (anodic) = 1.23V vs. SHE$

 $4H^+ + 4e^- \longrightarrow 2H_2$ E (cathodic)= 0V vs. SHE

CURRENT VOLTAGE CHARACTERISTICS OF A ELECTROLYZER

Electrode assembly

Factors affecting a electrode reaction

- Mass transfer
- Electron transfer at electrode surface
- Chemical Reactions preceding or following electron transfer
- Other reactions such as adsorption, desorption etc.

emf of a cell reaction

 $\Delta G = -nfE_{rxn}$

emf is positive when reaction is spontaneous by definition

Zn + 2AgCl \rightarrow Zn²⁺ + 2Ag + 2Cl⁻ Zn/Zn²⁺ (a =1), Cl⁻/AgCl/Ag Cell emf = E_{rxn} = Electrostatic potential of the RHS – electrostatic potential of LHS

Primary reference

The standard half-cell assumed to be zero (0), is the H_2 half-cell. It is a half cell with H_2 gas bubbled in at SATP over an inert platinum electrode

Normal/Standard Hydrogen Electrode Its emf taken as 0 at all temperatures

 $H_2(g) = 2H^+ + 2e^-$

Half Cells

-ve potential

Metal Solution (e.g. H₂O) Electrode

-ve potential

+ve potential

Electrochemical interface

Nature of ions in solution

State of solvation

-Adsorption

Kinetics of Electrochemical Rxn

$$A \xrightarrow{k_{f}} B$$

$$V_{f} = k_{f} C_{A} \implies V_{nef} = k_{f} C_{A} - k_{b} C_{B}$$

$$V_{b} = K_{b} C_{B}$$

At Equilibrium.

$$V_{net} = 0$$

=> $K_f C_A = K_b C_b => \frac{K_f}{K_b} = \frac{C_g}{C_A} = K_{eq}$

At Equilibrium

Phenomenological picture

$$\vec{l} = a' e^{n/b} \quad \text{ohere} \quad \eta = \text{overpotential}.$$

$$\vec{T} = a + b \log \vec{l} \quad \cdots \quad \text{Tatel Equation.}$$

$$\text{For Rxn:} \quad 0 + me \quad \overleftarrow{k_{\text{F}}} \quad R$$

$$\text{Write done (electrically)}$$

$$\Delta q = -nF \, bE \quad \cdots \quad \text{charge moving across a potential}$$

$$drop \quad .$$

$$\Delta q^{\circ} = -RT \, on \, K_{eq}$$

$$\vec{E} = E^{\circ} + RT \, ln \, \frac{G^{*}}{G^{*}_{\text{F}}} \quad \cdots \quad \text{Nernst Equation.}$$

Interpreting potential

Overall Current

Surface concentration
$$C(x=o,t) \equiv C(o,t)$$

Rate of Find. River. $V_f = k_f C_0(o,t) = \frac{c_n/nFA}{V_b = k_b C_R(o,t)} = \frac{c_n/nFA}{v_b = k_b C_R(o,t)} = \frac{c_n/nFA}{v_b = k_b C_R(o,t)}$

Ralë of R×n.
$$V_{net} = V_f - V_b$$

= $k_f C_0(0,t) - k_b c_R(0,t)$
= $\tilde{c}_c - \tilde{c}_a$.
 $m_F A$.

overall current:
$$\hat{t} = \hat{c} - \hat{c} =$$

= $n \neq A \begin{bmatrix} k_f & (b_f) - k_s & (c_f) \end{bmatrix}$

Kinetic Theory

Butler Volmer Electrode Kinetics

$$k_{f} = A_{f} e \times p \left(-\Delta G_{c}^{++} | RT \right)$$

 $k_{b} = A_{b} e \times p \left(-\Delta G_{a}^{++} | RT \right)$

Insert-IE Activation. Energy:

$$k_{f} = A_{f} \exp \left(-\Delta q_{oc}^{++}/RT\right) \exp \left[-\alpha (f(E-E^{o}))\right] \qquad \left[f = F/RT\right]$$

$$k_{b} = A_{b} \exp \left(-\Delta q_{oc}^{++}/RT\right) \exp \left[(1-\alpha)f(E-E^{o})\right]$$

at Equilibrium kf = kb = k°

=>
$$k_{f} = k^{\circ} exp \left[- \alpha f (E - E^{\circ}) \right]$$

 $k_{b} = k^{\circ} exp \left[(1 - \alpha) f (E - E^{\circ}) \right]$
 $i = i_{e} - i_{a} = nFA \left[k_{f} c_{o}(o_{i}t) - k_{b} c_{e}(o_{i}t) \right]$
 $i = FA K^{\circ} \left[c_{o}(o_{i}t) e^{\alpha f (E^{-}E^{\circ})} - c_{e}(o_{i}t) e^{(1 - \alpha) f (E^{-}E^{\circ})} \right]$

Butler Volmer Electrode Kinetics

$$i = i_0 \left\{ \frac{C_o(0,t)}{C_o^*} \exp\left[\frac{\alpha_a n F \eta}{RT}\right] - \frac{C_r(0,t)}{C_r^*} \exp\left[-\frac{\alpha_c n F \eta}{RT}\right] \right\}$$
Exchange current
K° \rightarrow approach to equilibrium.
k° $- |arge : approach Eqt fast. [1-10 cm/s]$
k° $- smal : n + slow [-10^{-6} - 10^{-9} cm/s]$
kinetic measurement over 10 orders of magnitude.

one drives an elector chemical RXN by supplying activation energy elector chemically.

Marcus theory of electron transfer

 $Ru(NH_3)_6^{3+} + e \rightarrow Ru(NH_3)_6^{2+}$

By Frank Condon principle e trasfer happens at 9tt.

$$\begin{aligned} G_{0}^{\circ}(q^{++}) &= \frac{k}{2} \left(q^{++} - q_{0}\right)^{2} \\ G_{R}^{\circ}(q^{++}) &= \frac{k}{2} \left(q^{++} - q_{R}\right)^{2} + \Delta G^{\circ} \\ & \in \text{ the point of } e^{\Theta} \text{ transfer.} \\ & G_{0}^{\circ}(q^{++}) &= G_{R}^{\circ}(q^{++}) \\ & = G_{R}^{\circ}(q^{++}) \\ & = \frac{q^{\circ}}{2} \left(q^{++} - q_{R}\right)^{2} + \frac{\Delta G^{\circ}}{2} \\ & = \frac{Q^{\circ}}{2} \left(q^{++} - q_{R}\right)^{2} \\ & = \frac{Q^{\circ}}{2} \left(q^{+} - q_{R}\right)^{2} \\ &$$

Marcus theory of electron transfer

$$\begin{split} & \Delta G_{+}^{++} = K \left(\frac{q_{R} - q_{0}}{8} \right)^{2} \left[1 + \frac{2\Delta G^{0}}{k \left(q_{R} - q_{0} \right)^{2}} \right]^{2} \\ & \text{Define } \lambda := K_{L} \left[q_{R} - q_{0} \right]^{2} \longrightarrow \text{Reorganization} \\ & = \lambda \left[\Delta G_{+}^{++} = \frac{\lambda}{4} \left(1 + \frac{\Delta G^{0}}{\lambda} \right)^{2} \right] \\ & \text{Reorganization Energy : energy necessary to transform the nuclear } \\ & \text{configuration in veaulants } solvents \rightarrow \text{products } \text{solvents} \\ & \lambda_{1}^{e} = \sum_{j=1}^{l} k_{j} \left(q_{0,j} - q_{0,j} \right)^{2} \\ & \text{from solvert from solvents} \\ & \lambda_{1}^{e} = \sum_{j=1}^{l} k_{j} \left(q_{0,j} - q_{0,j} \right)^{2} \\ & \text{from solvert from solvents} \\ & \text{disteric} \\ & \text{dister$$

Marcus theory of electron transfer

Value of alpha: ~ 0.5 are used in Butler Volmer theory but there is also some potential dependence

$$\alpha' = \frac{1}{F} \frac{\partial q_{\pm}^{\dagger \dagger}}{\partial E} = \frac{1}{2} + \frac{F(E - E^{\circ})}{2\lambda}$$

Cottrell Eqn.

$$\dot{i}_{t} = \frac{n F A C_{0} D_{0}^{1/2}}{\pi^{1/2} t^{1/2}}$$

The current is diffusion limited, no contribution from kinetic regime

Stepping from E⁰ where there is no electrochemical activity to region to some arbitrary potential within the region of reduction wave

$$E = E^0 + \frac{RT}{nF} \ln \frac{C_0(x,t)}{C_R(x,t)}$$

Assuming nernstian behavior *Fast kinetics*

Diffusion Eqns. $\frac{\partial C_0(x,t)}{\partial t} = D_0 \frac{\partial^2 C_0(x,t)}{\partial x^2}$ $C_0(x,t) = C_0^* @t = 0$ $\lim_{x \to \infty} C_0(x,t) = C_0^*$ $\frac{\partial C_R(x,t)}{\partial t} = D_R \frac{\partial^2 C_R(x,t)}{\partial x^2}$ $C_R(x,t) = C_R^* @t = 0$ $\lim_{x \to \infty} C_R(x,t) = C_R^*$

Flux balance: $D_0(\frac{\partial C_0(x,t)}{\partial t})_{x=0} + D_R(\frac{\partial C_R(x,t)}{\partial t})_{x=0} = 0$

$$i = \frac{nFAD_{0}^{\frac{1}{2}}C_{0}^{*}}{\pi^{\frac{1}{2}}t^{1/2}(1+\gamma\theta)}$$
 ... Solution

$$\frac{C_0(x,t)}{C_R(x,t)} = e^{\frac{nF}{RT}(E-E^0)} = \theta$$

From Nernst Eqn. Fast Kinetics

Shape of current potential curve

Figure 5.4.1 Characteristics of a reversible wave in sampled-current voltammetry. This curve is for n = 1, T = 298 K, and $D_{\rm O} = D_{\rm R}/2$. Because $D_{\rm O} \neq D_{\rm R}$, $E_{1/2}$ differs slightly from $E^{0'}$, in this case by about 9 mV. For n > 1, the wave rises more sharply to the plateau (see Figure 5.4.2).

$$E = E^{0'} + \frac{RT}{nF} \ln \frac{D_{\rm R}^{1/2}}{D_{\rm O}^{1/2}} + \frac{RT}{nF} \ln \frac{i_{\rm d}(\tau) - i(\tau)}{i(\tau)}$$

Cyclic Voltammetry

 $O + ne \rightleftharpoons R$ E = E - vt

Assuming Nernstian Kinetics: FAST

 $\frac{C_0(x,t)}{C_R(x,t)} = e^{\frac{nF}{RT}(E_i - vt - E^0)} = f(t)$

$$i_P = (2.69 \times 10^5) A D_0^{1/2} n^{3/2} C_0^* V^{1/2}$$

Scan rate-variation

Number of electrons transferred n

Non-nernstian kinetics

Transfer coefficient dependence α variation

Adsorption/desorption

Adsorption + electron transfer

Attraction between O* decreasing

Pourbaix Diagram E-pH diagrams

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O_1.2V \text{ vs. SHE}$

 $2H^+ + 2e^- \rightarrow H_2 0V vs. SHE$

Derive from Nernst Equation

Thermodynamic information only !

Pourbaix Diagram

Electrochemical stability of materials can be inferred instantly

Theory

Creation of internal standards in DFT have helped in referencing the electrode to potential PHYSICAL REVIEW B 73, 165402 (2006)

Theory

Figure 8. Snapshots indicating the adsorption geometry of (a) water, (b) oxygen, (c) hydroxyl, and (d) hydrogen for the neutral slabs utilized in Model 3.

J. Phys. Chem. B 2006, 110, 21833-21839

Idea of a limiting overpotential importance of intermediates

Rossmeisl et. al.

PEM Fuel cell Cathode (ORR)

Gasteiger, Kocha, Sompalli, Wagner, Applied Catalysis B: Environmental, **56 (2005) 9-35.**

OER

 $H_2O \rightarrow \frac{1}{2}O_2+2H^++2e^-$

Summary

- Certain fundamental electrochemical challenges form the basis of sustainable energy scenario.
- Challenges coming from kinetics, stability, electron and mass transport need to be solved. Some can be solved by chemistry and some need to the solved through engineering design.