

Modern Methods in Heterogeneous Catalysis Research

Photoelectron Spectroscopy

Axel Knop (knop@fhi-berlin.mpg.de)

Outline

Photoelectron Spectroscopy: General Principle Surface sensitivity Instrumentation **Background subtraction** PES peaks, loss features Binding energy calibration Chemical state Peak fitting **Quantitative Analysis** High pressure XPS examples

Problem: What is the (chemical) composition of a surface

<u>Goal:</u>

Elemental composition

- Species of atoms on surface
- Concentration of surface atoms
- Vertical distribution
 - \rightarrow on surface (adsorbate)
 - → near surface

Molecular state of adsorbates

Oxidation state of surface species • $Me^0 \Leftrightarrow Me^{n+}$

Photoelectron Spectroscopy: General Principle

General Principle

- Detection of photoelectrons from the valence band region and core levels

 Detection of Auger electrons and X-Ray Fluorescence

Binding Energy out of: $h\nu = E_v{}^{sp} + E_{kin}$ $h\nu = E_{kin} + E_v{}^{sa} + \Phi_{sp} - \Phi_{sa}$ $h\nu = E_{kin} + E_F + \Phi_{sp}$

X-ray twin anode

Parallel plate mirror analyser

Halbkugelanalysator

Halbkugelanalysator

Elektronen werden zunächst um bestimmten Energiebetrag **abgebremst**

Nur Elektronen mit bestimmter **"Passenergie"** können Detektor erreichen

Je kleiner die "Passenergie" desto genauer die Messung

Detector: Channeltron

XP spectra: two different anode materials

Where do the electrons come from?

Distance electron can travel in solids depends on:

- Material
- Electron kinetic energy

→ Measure attenuation of electrons by covering surface with known thickness of element

Sampling Depth

Disregarding elastic scattering:

Sampling depth:

For normal takeoff angle, $\cos\Theta=1$:

- When d= λ : -ln(I/I₀)=0.367, i.e. 63.3% from within λ
- When d= 2λ : -ln(I/I₀)=0.136, i.e. 86.4% from within 2λ
- When d= 3λ : -ln(I/I₀)=0.050, i.e. 95.0% from within 3λ

Mean Free Path of Electrons in Solids

- IMFP is average distance between inelastic collisions
- Minimum λ of 5-10Å for KE ~ 50-100 eV
- → Maximum surface sensitivity

Origin of background

Background of scattered electrons due to limited IMFP → Higher for low KE

Background Correction

→ Choose suitable energy range for substraction
 → Baseline on high KE side

Background Correction

Several ways to substract background:

- Stepwise
- Linear
- Method of Tougaard

→Most common:Method of Shirley et al.:

$$b_i = k \sum_{j=i+1}^{N} p_j$$

Always use same background substraction method for all peaks!

D.A. Shirley, Phys. Rev. B, 5, S. 4709, 1972.

Spectral features: PE Peaks

Orbital peaks used to identify different elements in sample

Observation:

- s orbitals are not spin-orbit splitted \rightarrow singlet in XPS
- p, d, f.. Orbitals are spin-orbit splitted \rightarrow doublets in XPS

Spectral features: PE Peaks

Spectral features: Auger Peaks

Auger peaks:

Result from excess energy of atom during relaxation (after core hole creation)

- always accompany XPS
- broader and more complex structure than PES peaks

KE energy independent of incident hv

Spectral features: Loss Peaks

Energy loss (plasmon) lines associated with the 2s line of aluminum

After Emission of PE the remaining electrons rearrange (<u>Secondary peaks</u>):

• Relaxation by excitation of valence electron to higher state (*shake up*)

→ loss of kinetic energy of PE leads to new peaks shifted in BE with respect to main peak

- Relaxation by ionisation of valence electron (*shake off*)
- → broad shoulder to main peak
- Plasmon losses

Spectral features: Loss Peaks

(Clark et al., Copyright Elsevier Science Publishers)

Loss peaks can be used to identify chemical composition

Problem: References needed (theoretical or experimental)

Relationship between the degree of core level asymmetry and the density of states at the Fermi level (BE=0)

Analyzing the data: Calibration of Binding Energies

Identification of FE:

Easy for high density of states near E_F , but may be ambigeous for samples with low DOS near E_F , band gap or charged samples

Line profile modification by charging

Mo oxide on silica real catalyst is powder sample after impregnation and calcination.

Analyzing the data: Calibration of Binding Energies

(Handbook of Photoelectron Spectroscopy, Perkin-Elmer-Corporation)

Identification of FE:

In case of low DOS near E_F, band gap or charged samples (spectrum will move in this case!)

→ Look for reference peaks with <u>known</u> BE (be sure about that!!!)
 → Works for any PE or Auger peak, e.g. peaks originating from substrate

Chemical Shift

BE of core electrons depends on the electron density of the atom (screening of the core electrons), affected by the electronegativity of neighboring atoms

For unknown BE:

- Calculation of Pauling's Charge (easy, but not always true)
- More elaborate calculations (theorists, also not always true)

Analyzing the data: Chemical States

Table 3.6 N 1s binding energies. (Reproduced from Wagner et al.²⁷ by permission of Perkin-Elmer Corporation)

COMPOUND	204			1s BINDING					G ENERGY, eV				410			10.00	
	394			39	98			40	12			40	16			410	
BuNH ₂			T		Π										Τ		2023
PhNH ₂					Ι.												0.00
pyridine					μ												NGACE :
H2NC,HANO,						IL.											10.0230
H2NSO2C,N,NO2						U.											NUCLES -
tetracyanoquinodimethane																	
PhON						١.											(hann)
PRINHUSINHPR																	12.16.1
guandine ACI																	
DENNIDE																	2.49
H N+CHRCOO-			n un	1000							002						hards the
EINH CI																	
Me.NBr								۱.									
Me.NCI								1									
p-NH, +C,H,SO,-					11						201						
chloranil-pyridine																	
MeaNO																	Num - Carlo
AmONO					Ι												
MeNO ₂																	
PhNO ₂																	No.
WN																	0.0000
BN																	1015019
NaSCN				1,													d there
K ₄ Fe(CN) ₆																	DODOS.
KCN					Ι.										1		
S ₂ N ₂	menta		en ma	1000		0.0	0.05	il and a	0.00	0039	1059	0.00		0.00			the second
CO(NH ₃) ₈ Cl ₃																	New orall
NH OHITCH-																	China and
								ľ									Contractory -
Na.N.O.						1											and the second second
NaN.							1										
NaNO										1							and and the second
NaNO										1							action of the

References:

 Use of data bases (NIST, Handbook of Photoelectron Spectroscopy etc.*)

• Clean materials (pure metals, well defined substrates, "untreated" samples etc.)

• Literature about similar topics

*,Handbook of Photoelectron Spectroscopy", Perkin-Elmer, 1992

G. Ertl, J. Küppers;

"Low Energy Electrons and Surface Chemistry"; VCH Verlag, 1985

S. Hüfner; 'Photoelectronspectroscopy'; Springer, 1995.

D. Briggs, M.P. Seah;

"Practical Surface Analysis", Vol. 1; Wiley + Sons, 1990.

Analyzing the data: Peak Fitting

Several influences on peak shape:

• Broadening mainly due to excitating light (natural), structural and thermal effects

• Asymmetry due to final state effects

• Species with similar BE

These effects have to be considered when fitting by reasonable chemical/physical model of the sample!!!

Analyzing the data: Peak Fitting

Most fitting programs provide useful tools:

Levenberg-Marquardt algorithm to minimize the χ^2

$$\chi^2(p) = \frac{1}{N-P} \sum_{i} \left[\frac{M(i) - S(i;p)}{\sqrt{M(i)}} \right]^2$$

- M: measured spectrum
- N: energy values
- S: synthesized spectrum
- P: parameter values

Asymmetric Peak shapes modeled by Doniach-Sunjic functions (convoluted with Gaussian profiles)

$$DS(E) = \beta \cdot \frac{\cos\left\{\pi \frac{\alpha}{2} + (1 - \alpha) \arctan\left[\frac{E - E_0}{\beta}\right]\right\}}{\left[(E - E_0)^2 + \beta^2\right]^{\frac{1 - \alpha}{2}}}$$

-

r.

- β: peak parameter
- M: mixing ratio
- α: asymmetry parameter
- h: peak height
- $\alpha \rightarrow 0$: Lorentzian profile

Convolution of Lorentz (or D.S.) Gaussian profiles suited best!!

$$f(E) = f(L * G) = \int_{-\infty}^{\infty} L(E')G(E - E')dE'$$

→ Voigt function

Analyzing the data: Peak Fitting

But: both may differ for different components → discrepancy for different peaks should always be based on physical reasons

Quantitative Analysis

Goal:

Elemental composition

- Species of atoms on surface
- Concentration of surface atoms
- Vertical distribution
 - \rightarrow on surface (adsorbate)
 - → near surface

Molecular state of adsorbates

Oxidation state of surface species • Me⁰ ⇔ Meⁿ⁺

Quantitative Analysis: First Steps

In general:

$$I_{X} = B \times \sigma \times \lambda_{tot} \times T \times n_{X}$$

- **B:** all instrumental contributions
- $\boldsymbol{\sigma}$: ionisation cross section for given photon energy
- λ_{tot} : total escape depth
- T: transmission through surface
- n_x: atomic density of analyzed species in sample

 $\sigma = \sigma_{tot} \times f(X, \alpha)$

with $f(X,\alpha) = 1 + (\beta(X)/4) (1 - 3\cos^2 \alpha)^*$

 σ_{tot} : total ionisation cross section

f: form function accounting for asymmetry of peak

β: asymmetry parameter

α: angle between photon beam and emitted electron (different for standard x-ray source and synchrotron)

*Yeh and Lindau, Atomic data nucl. data tables32(1985)1

$\lambda_{tot} = E(X) \times 1/a[ln(E(X)-b)^*]$

E: KE of electron

a, b: parameters dependent on dielectric function and concentration of host

*Penn, J.of Electr.Spectr. And Rel. Phen. 9(1976)29

Cross section changes with energy of incident beam!!!

Quantitative Analysis: Cross Section

Calculated changes of Cross section beam energy

(Yeh, Lindau; Atomic data and nuclear data tables 32 (1985) 1)

Quantitative Analysis

In most cases the sample surface is quite heterogeneous

→ Need of *models* to extract an accurate approximation of composition out of spectral intensities

Ru 3d5/2-map of the chemical states on Ru(0001) after pre-treatment with O performed with Scanning Photoelectron Microscopy (ELETTRA):

Quantitative Analysis: Useful Examples

A. Heterogeneous mixture (e.g. alloy):

with the formulas above follows

$$\frac{I_{A}}{I_{B}} \cdot \frac{I_{B}^{0}}{I_{A}^{0}} = \frac{N_{A}}{N_{B}} \cdot \frac{N_{B}^{0}}{N_{A}^{0}} \cdot \frac{\lambda_{AB}(E_{A})}{\lambda_{AB}(E_{B})} \cdot \frac{\lambda_{B}(E_{B})}{\lambda_{A}(E_{A})}$$

and

$$\begin{split} \lambda_{A} &= 0.41 \cdot a_{A}^{1.5} \cdot E_{A}^{0.5} \\ \frac{N_{A}}{N_{B}} \cdot \frac{N_{B}^{0}}{N_{A}^{0}} &= \frac{X_{A}}{X_{B}} \cdot \left(\frac{a_{A}}{a_{B}}\right)^{3} \end{split}$$

a_A: "radius of A" → Mol fraction

follows

$$\frac{\mathbf{X}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{B}}} = \left(\frac{\mathbf{a}_{\mathbf{B}}}{\mathbf{a}_{\mathbf{A}}}\right)^{1,5} \cdot \frac{\mathbf{I}_{\mathbf{A}} / \mathbf{I}_{\mathbf{A}}^{0}}{\mathbf{I}_{\mathbf{B}} / \mathbf{I}_{\mathbf{B}}^{0}}$$

I_{A,B}⁰: reference of clean material

Quantitative Analysis: Useful Examples

C. Thin layer of A on B (e.g. oxide):

Contribution of B:

$$I_{B} = I_{B}^{0} \exp\left(-\frac{d_{A}}{\lambda_{A}(E_{B})} \cdot \cos\Theta\right)$$

Contribution of A:

$$I_{A} = I_{A}^{0} \exp \left[1 - \exp \left(-\frac{d_{A}}{\lambda_{A} (E_{A})} \cos \Theta \right) \right]$$

Which gives

$$\frac{I_{A}}{I_{B}} = \frac{I_{A}^{0}}{I_{B}^{0}} \cdot \frac{1 - \exp\left(-\frac{d_{A}}{\lambda_{A}(E_{A})} \cos\Theta\right)}{\exp\left(-\frac{d_{A}}{\lambda_{A}(E_{B})} \cos\Theta\right)}$$

→ Special case:

$$\lambda_A(E_A) \sim \lambda_A(E_B)$$
 i.e. $E_A \sim E_B$

follows

$$d_{A} \approx \frac{\lambda_{A}}{\cos \Theta} \cdot \ln \left[1 + \frac{I_{A}}{I_{B}} \cdot \frac{I_{B}^{0}}{I_{A}^{0}} \right]$$

General problem here: proper background substraction

In situ XPS: obstacles

Fundamental limit:

elastic and inelastic scattering of electrons in the gas phase

- <u>Technical issues:</u> Differential pumping to keep analyzer in high vacuum
 - Sample preparation and control in a flow reactor

In situ XPS: basic concept

- Photons enter through a window
- Electrons and a gas jet escape through an aperture to vacuum

In situ XPS instruments: previous designs

- H. Siegbahn et al. (1973-)
- M.W. Roberts et al. (1979)
- M. Faubel et al. (1987)
- M. Grunze et al. (1988)
- P. Oelhafen (1995)

In situ XPS using differentially pumped electrostatic lenses

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley, Z. Hussain, M. Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.

Close-up of sample-first aperture region

In situ XPS system

Application of in situ XPS to catalysis: methanol oxidation on Cu

What is the state of the surface under reaction conditions?

Partial oxidation of methanol

UHV XPS I.E. Wachs & R.J. Madix, Surf. Sci. 76, 531 (1978); A. F. Carley et al., Catal. Lett. 37, 79 (1996). $O^{-}(a) + 2CH_{3}OH(g) \longrightarrow 2CH_{3}O^{-}(a) + H_{2}O(g)$ $CH_{3}O^{-}(a) \longrightarrow CH_{2}O(g) + H^{+}(a)$

Questions for in situ XPS: - Quantitative analysis of surface species

- Carbon species on the surface
- Depth-dependent analysis

<u>sample:</u> polycrystalline Cu foil

Variations of mixing ratios: $CH_3OH: O_2 = 1:2, 3:1, 6:1;$ T = 400 °C; p = 0.6 mbarTemperature series:gas mixture at room temperature: $CH_3OH: O_2 = 3:1;$ p = 0.6 mbar; temperature:25 °C \rightarrow 450 °Cflow rates:10 ... 20 sccm

XPS measurements Beam line U49/2-PGM1 at Bessy Energy range 100...1500 eV total spectral resolution 0.1 eV @ 500 eV

> O 1s, C 1s, Cu 3p, Cu 2p: KE ~ 180 eV Valence Band: KE ~ 260 eV

Depth profiling with KEs 180 eV, 350 eV, 500 eV, 750 eV

Methanol oxidation on Cu: Ols spectra

Ols depth profiling

Metastability of the Sub-Surface Oxygen

normalized sub-surface oxygen peak area

Depth profiling

(calculated from Cu 3p and sub-surface O 1s)

Reducing conditions

Open questions: What is the nature of the sub-surface oxygen species? What is its role in the catalytic reaction?

Introduction

Selectivity issue: what defines selectivity?

In-situ XPS: Pd 3d depth profiling

In-situ XPS: C1s (Switching off experiments)

reaction mix.
 C5 off
 H2 off
 C5 gas-phase

In-situ XPS: Pd 3d (Switching off experiments)

In-situ XPS: Pd vs. C depth profiling

Model

core states atom specific quantitative complex final state effects chemical shift concept theoretically difficult accessible can be applied in the mbar range surface sensitive depth profiling

Literature

1. W. Göpel, Chr. Ziegler: Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie, Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1991 2. M. Henzler, W. Göpel: Oberflächenphysik des Festkörpers, Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1991 3. W. Göpel, Chr. Ziegler : Einführung in die Materialwissenschaften, Teubner Verlagsgesellschaft, Stuttgart-Leipzig, 1996 4. D. Briggs, M. P. Seah: Practical Surface Analysis, Volume 1: Auger and X-Ray Photoelectron Spectroscopy, 2. Auflage, John Wiley & Sons, Chichester, 1990 5. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg: Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979 6. H. Lüth: Surfaces and Interfaces of Solid Materials, 3. Auflage, Springer Verlag, Berlin, 1995 7. G. Ertl, J. Küppers: Low Energy Electrons and Surface Chemistry, VCH Verlagsgesellschaft, Weinheim, 1985 8. K. Siegbahn, C. Nording et al.: ESCA Applied to Free Molecules, North-Holland, Amsterdam, 1971 9. M. Cardona, L. Ley: *Photoemission of Solids*, Topics in Applied Physics, Band 26 und 27, Springer Berlin, 1978 10. M. Grasserbauer, H. J. Dudek, M. F. Ebel: Angewandte Oberflächenanalyse mit SIMS, AES und XPS, Springer Berlin, 1979 11. D. Briggs and J. T. Grant: Surface Analysis by Auger and Photoelectron Spectroscopy, Surface Spectra and IM Publications 2003