

Spectroelectrochemical methods in battery research

Modern methods in heterogeneous catalysis

Julian Tornow Department of inorganic chemistry, FHI Berlin

3rd February 2012

Primary battery

- Zinc-carbon battery
- Alkaline (Zn | MnO₂)
- Nickel oxohydride
- Lithium battery
- •...

Secondary battery

- Lead-acid battery
- Nickel-Cadmium battery
- Nickel-metalhydride battery
- Nickel-zinc battery
- Lithium-ion battery
- Lithium polymer battery
- Lithium-sulfur battery
- Lithium-air battery
- Sodium-sulfur battery
- •...

Ternary battery

- Redox-flow battery
- Fuel cell

www.varta.de

Tarascon et al., Nature 1414 (2001) 359

Cathode materials (Li-ion)

<u>Structure</u>

Shao-Horn et al., nature materials 2 (2003) 464

LiCoO₂, LiNiO₂ Graphite

Electrodes with channels

Tarascon et al., Nature 1414 (2001) 359

Polyanions (e.g. LiFePO₄) Spinel (e.g. LiMn₂O₄)

	Phase	theor. Capacity	Volume change
Graphite	LiC ₆	372 mAh/g	12%
Silicon	Li ₂₁ Si ₅	4010 mAh/g	297%
	Si - Si - C	Embedding Si na carbon to compe volumechanges	noparticles in nsate for
Low cycling stability			
ocity / mA			
छ 500 - Cut-off: 0.01-3.0 V			
Current-density: 100 mAg ⁻¹ 0			
J. Power Sources 196 (2011) 4811			

$$Li \Leftrightarrow Li^{+} + e^{-} \qquad \eta_{i} = \mu_{i} + z_{i}q\varphi$$
$$\eta_{Li^{+}} = \mu_{Li} - \eta_{e^{-}} \qquad \mu_{i} = \mu_{i}^{0} + kT \cdot \ln(a_{i})$$

Battery cycling (galvanostatic)

LiFePO₄

0.2

ca. 170 mAh/g

0.4

3.0

2.6

0

Huang et al., Electrochem. Solid- State Lett., 4 (2001) A170

0.6

x Li/LiFePO₄

0.8

1.0

- → Determination of the capacity and observation of phase transitions
- Change of slope means phase transition
- plateau is a two phase region (Gibbs phase rule) linear slope is one phase region
- Information about polarisation from variation of charge/discharge rates (current)

Charge rate of 1C means complete charge in 1 hour Charge rate of 0.1C means complete charge in 10 hour

Tarascon et al., J Electrochem. Soc. 138 (1991) 2859

Cycling voltammetrie

→ Determination of the redox potential and transport properties

Current measurement while sweeping voltage with a defined rate.

$$E_{Li^{+/0}} = -3.04 \text{ V vs. SHE}$$

 $E_{Fe^{3+/2+}} = +0.77 \text{ V vs. SHE}$

 $\Delta E = 3.81 V$

Difference to experimentally determined 3.4V due to matrix effects (e.g. PO₄)

Unresolved problems

<u>Definition</u>: In situ spectroscopy during electrochemical reaction

Benefits: - follow the dynamic behavior of an electrochemical reaction

- resolve intermediate and metastable products

Methods:

- Differential electrochemical mass spectroscopy DEMS
- Ellipsometry
- UV- and visible spectroscopy
- Infrared spectroscopy
- Raman spectroscopy
- X-ray diffraction
- X-ray absorption spectroscopy
- Photoelectron spectroscopy
- Nuclear meagnetic resonance spectroscopy
- Electron spin resonance spectroscopy
- Electron microscopy (EELS)

•...

Principle of mass spectrometry

Deflection due to magnetic field

$$F_{L} = Bev = \frac{mv^{2}}{R} = F_{ZF}$$
$$E_{kin} = \frac{1}{2}mv^{2} = eU = E_{el}$$
$$\implies R = \frac{1}{B}\sqrt{\frac{m}{e}}2U$$

Quadropole

Deflection due to electrical field (DC and AC)

 $U_1 = U_0 + V\cos(2\pi vt)$ $U_2 = -U_0 - V\cos(2\pi vt)$

www.files.chem.vt.edu/chem-ed/ms/graphics/quad-sch.gif

Example spectrum (Ethanol)

Decomposition of the molecules due to ionisation

In situ cell setup (DEMS)

DEMS (CO₂) on different cathodes and electrolytes

Principle of infrared spectroscopy

AllenMcC., HarmOsziFunktionen, Wikimedia Commons

Physical background: Exitation of higher virbrational modes n due to energy absorption

Harmonic oscillator:
$$v_m = \frac{1}{2\pi} \sqrt{\frac{k(m_1 + m_2)}{m_1 m_2}}$$

quantisized Energy:
$$E = \left(n + \frac{1}{2}\right)hv_m$$

Infrared absorption in water

Kebes, Wikimedia Commons

Water (and other polar solvents) absorb IR light \rightarrow Problem for Spectroelectrochemistry

In situ cell setup (external reflection)

- Problems: Polar solvents (as typically used in batteries) absorb IR light
 - black samples (as typical for battery electrodes) absorb IR light
 - large distance between counter and working electrode (significant ohmic drop)

In situ cell setup (attenuated total reflection)

www.geothermie.de/typo3temp/pics/f332292d5e.png Snellius law: $\sin(\Theta_{krit}) = \frac{n_2}{n_1}$

Total reflection if $\Theta > \Theta_{krit}$

Penetration depth of evanescent wave:

<u>Pro</u>

- low absorption in electroyte
- good electrical pathway

<u>Contra</u>

-no active electrode (only thin metal film)

 decomposition of ATR-crystal (esp. at low potentials -> anode reaction)

Infrared spectrum of typical electrolyte for Li-ion batteries (on ATR-FTIR)

J. Sol. Chem. 29 (2000) 1047

In situ FTIR (external reflection) for surface film formation on LiCoO2

Principle of Raman spectroscopy

Physical background: Change in polarization due to vibration

Incident light:
$$E = E_0 \cdot \cos(2\pi \cdot v_{in} \cdot t)$$
 Vibration: $R = R_0 + A \cdot \cos(2\pi v_{vib}t)$
Polarisation: $P = \alpha E$ Polarizability: $\alpha(R) = \alpha(R_0) + \frac{d\alpha}{dR} \cdot (R - R_0)$
 $P = \alpha(R_0)E_0 \cos(2\pi v_{in}t) + \frac{1}{2}AE_0 \frac{d\alpha}{dR} \left\{ \cos[2\pi (v_{in} - v_{vib})t] + \cos[2\pi (v_{in} + v_{vib})t] \right\}$
Rayleigh Stokes Anti-Stokes

In situ Raman spectroscopy

http://www.raman.de/htmlEN/basics/intensityEng.html

Intensities

Stokes: $N_0 \rightarrow N_1$ Ant-Stokes: $N_1 \rightarrow N_0$ N_0 : ground state N_1 : first exited state

$$\frac{N_1}{N_0} \propto e^{-\left(\frac{\hbar v_{vib}}{kT}\right)}$$

Example spectrum (water)

www.chemgapedia.de/vsengine/media/vsc/de/ch/3/anc/ir_spek/raman_spektroskopie/ra_probenvorbereitung/rawasser_m13bi0603.gif

Weak signal from water (and other polar solvents) \rightarrow no problem for spectrolectrochemistry

In situ cell setup

Raman spectrum of typical electrolyte for Li-ion batteries

J. Sol. Chem. 29 (2000) 1047

In situ Raman on graphite electrode

- Inhomogeneities in the sample
- Increase of I_G/I_D with lower potential
- Phase transition in different states of charge can be observed
- Detailed structure analysis is lacking

Theoretical Raman spectra of intercalated lithium in amorphous carbon

Li-C interaction leads to rise of $\rm I_G/I_D$ and fomation of Li-C band

Principle of NMR

Skoog, Leary; Instrumentelle Analytik; Springer 1996; p. 337

<u>Physical background</u>: Orientation of the core spin induced magnetic moment due to EM-wave absorption

Chemical shift: from electrons induced magnetic field (Lenz rule) shifts effective B and therefore the absorption Energy

Spin-spin coulping: effect of core spins from neighboring cores

Example spectrum (ethanol)

T.vanschaik, 1H_NMR_Ethanol_Coupling_shown.GIF, Wikimedia Commons -100

J. Am. Chem. Soc. 131 (2009) 9239

Si anode (in situ XRD)

J. Electrochem. Soc. 154 (2007) A156

No specific information about amorpgous phase accesible with XRD \rightarrow use NMR

Si anode (ex situ)

⁷Li MAS NMR on electrodes after disassembling at different states of charge

Si anode (in situ) Static ⁷Li NMR

Additional peak forms at -10 ppm, which has not been detected with ex situ NMR

Si anode (in situ)

Time resolved relaxation after full lithiation (0mV)

 \rightarrow Self discharge process of the metastable Li₁₅Si₄ Phase with the electrolyte.