Inorganic Solid State Chemistry -

a brief overview or "a fast ride"

Wolfgang Bensch, University of Kiel

Berlin, Fritz-Haber Institut, 11.11.2011

Inorganic Solid State Chemistry

- High Temperature synthesis (ceramic methods)
- Reaction of thin films
- Co-Precipitation
- Precursor methods thermal decomposition reactions
- Reactions under high pressure and high temperature
- High energy ball milling
- Intercalation reactions
- Chemical vapor deposition (CVD)
- Reactions in melts
- Chemical transport reactions
- Solvo-/hydrothermal reactions
- Sol-gel processes
- Microwave assisted reactions
- Sonochemical reactions
- Electrochemical reactions
- Reactions in confined spaces

Inorganic vs. organic synthesis

- > rational: synthesis steps by analysing final product retro synthesis
- very good control of product composition
- very good control of structure and topology

High Temperature Synthesis

High temperature synthesis

- Formation of thermodynamic stable phases \rightarrow low product diversity
- More or less no control of composition of final product
- No control of final structure
- Mainly dense phases

Problem: Homogeneity of products

Optical homogeneous

optical inhomogeneous (mixture)

Seperation often problematic

 \rightarrow control of synthesis to obtain only one product

variation of educts/educt ratio, reaction time, reaction temperature,

heating and cooling rates

Homogeneity

Powder pattern

Charakteristics:

- ➤ position
- ➤ intensity
- ➤ broadness
- ➤ shape

Techniques

- 1. Ampoules (glass, quartz), vacuum, normal pressure, inert gases
- 2. Evacuation and fusing

requirements:

- \succ no reaction with educts
- \succ no impurities
- dry and clean

examples:

Glass or Quartz:

 reactions observable
but: not always inert, formation of silicides, oxides, silicates

Educt	Products	containers and reaction temperature
Li_2O, SiO_2	$Li_2Si_2O_5$	Pt crucible (air), 1100°C
Y_2O_3 , BaCO ₃ , CuO	YBa ₂ Cu ₃ O ₇	Al_2O_3 crucible (air), 1000°C
Na ₂ MoO ₄ , MoO ₃ , Mo	NaMo ₄ O ₆	Mo ampoule, 1100°C
Ca, CaCl ₂ , C (Graphit)	$Ca_3Cl_2C_3$	Nb or Ta ampoule, 900°C
Y, YCl ₃	Y ₂ Cl ₃	Nb or Ta ampoule, 800°C
Y, N ₂	YN	Mo boat, N ₂ flow, 900°C
KHF ₂ , NiF ₂	K_2NiF_4	Pt crucible, inert gas or vacuum, 700°C
La, Lal ₃	Lal	Nb or Ta ampoule, 750°C
Mo, Pb, MoS ₂	PbMo ₆ S ₈	evacuated quartz ampoule, 900°C

High temperature synthesis (ceramic method)

- Reaction at elevated temperartures in suitable containers
- > Why not at RT? Kinetically inhibited!
- > From thermodynamics: reaction Fe_3O_4 + AI is favored
- Elevated temperatures: acceptable reaction rates

Reaction rate depend on:

1. Temperature:

Activation energy for diffusion decreases. **Empirical rule**: $T_{\text{Reaction}} > 2/3 T_{\text{melting point}}(T[K])$

2. Energy

reactions are exothermic and controlled by thermodynamics!

3. Grain sizes

porosity, sizes of grains, contact of reacting interfaces are important for reaction progress

Reaction pathways

Diffusion in solids

Typical diffusion coefficents D for ion in solids at 300 K: 10⁻¹³ cm² s⁻¹.

Solid ionic conductors like Ag^+ ions in $\alpha\text{-AgI:}\thickapprox 10^{\text{-6}}\ \text{cm}^2\ \text{s}^{\text{-1}}$

Diffusion coefficients depend exponentially from T:

 $D = D_{\infty} \exp(-Q/kT)$

 $(D_{\infty}: D \text{ for } T \rightarrow \infty, \text{ pre-exponential factor; } Q: activation energy for Diffusion, k: Boltzmann factor) Plot log(D) vs. 1/T yields a straight line$

Slope: activation energy, intercept $\mathsf{D}_{\!\scriptscriptstyle\infty}$

$$\log(D) = \log(D_{x}) - Q/(RT)$$

Different types of diffusion

surface, interface, grain and volume diffusion

 $MgO + Al_2O_3 \rightarrow MgAl_2O_4$ (Spinell)

- ➢ Reaction starts at interface A-B
- First small nuclei are formed
- ➢ growth of nuclei

Nucleation

 $\gamma = \Delta G_S$ = specific interface energy $\gamma \Delta G_V$ = free enthalpy per volume

Diffusion and crystal growth

- supply of A and B through diffusion
- ➢ formation of two interfaces A|C and C|B: A and B must diffuse through these layers
- \succ product layer becomes thicker \rightarrow diffusion of A and B slows down

Consequently: only at high temperatures diffusion is fast enough

Investigation of growth? \rightarrow Tracer experiments

Growth

 $2AI^{3+} - 3Mg^{2+} + 4 MgO \rightarrow MgAl_2O_4 \qquad -2AI^{3+} + 3Mg^{2+} + 4 AI_2O_3 \rightarrow 3 MgAl_2O_4$

dx/dt ~ 1/x (growth rate as function of time t), x = reaction rate

3 equivalents Mg^{2+} generate 3 equivalents $MgAl_2O_4$ 2 equivalent Al^{3+} generate only 1 equivalent $MgAl_2O_4$ Product layer grows three times faster on Al_2O_3 side!

Parameters determining diffusion: OD defects

- a) Vacancy
- b) Substitutional atoms
- c) Interstitial atoms
- d) Schottky defects
- e) Frenkel defects
- f) Charge defects

Reasons for defect formation

- surface
- lattice vibrations T > 0 K
- structural defects

 $\Delta G = \Delta H - T \Delta S$

 ΔS = configurational entropy

The free energy is reduced up to a distinct defect concentration

Enhancement of reaction rates by reduction of particle size

Educt – ball milling!

Educts – press pellets, increase of reacting surface

 10^{3} particles, V = 0.1 · 0.1 · 0.1 = 0.001 cm³ Drastic increase of surface

Full-shell Clusters		Total Number of Atoms	Surface Atoms (%)
l Shell	8	(1 + 12)	92
2 Shells		55 (13 + 42)	76
3 Shells		147 (55 + 92)	63
4 Shells		³⁰⁹ (147 + 162)	52
5 Shells		⁵⁶¹ (309 + 252)	45
7 Shells		1415 (923 + 492)	35

TABLE 2.1 The relation between the total number of atoms in full shell clusters and the percentage of surface atoms

Metall-Nanocluster

Pt 200 1.8 nm

Auss

1.4 nm

Pd1415 3.0 nm

- Pd2057 3.6 nm
- Zentralatom umgeben von hdp/kdp Schalen
- Anzahl der Atome pro Schale $\Sigma = 10n^2 + 2$

Quelle: G. Schmid in "Nanoscale Materials in Chemistry", Wiley, 15 ff. (2001) G. Schmid in "Facetten einer Wissenschaft", Wiley-VCH, 127 ff. (2004)

2

 \rightarrow The smaller the particles, the larger amount of surface atoms

FIGURE 2.6 Relation between the size of gold particles and their melting point.

Thin Film Reaction

Model of a solid-solid reaction

Generally hold for solid-solid reactions?

What is the exact mechanism?

Investigations of bulk materials very difficult

Syntheses using thin films

Synthesis of thin films - MBE in Kiel

Synthesis of complex superlattices

Scheme of a $[(Bi_2Te_3)_x(TiTe_2)_x]$ superlattice

TEM image of the superlattice

Formation of superlattice

Advantages:

- > More or less all element combinations possible
- > control of product: composition of amorphous intermediate
- ➤ trap of new and metastable compounds: Na₃N, LiBr (Wurtzite), Mo₃Se, CrSb (Wurtzite)

Disadvantages:

- Special apparatus required (UHV)
- > Sample throughput and amount of sample are low
- > Characterization: time-consuming, special techniques required

Co-Precipitation Synthesis

Co-precipitation

- Dissolve salts in Wasser
- Co-precipitation by evaporation of solvent
- > Hydroxides, carbonates, oxalates, formiates, citrates as sources
- > Heating the precipitate at appropriate temperature in defined atmosphere

Example: synthesis of ZnFe₂O₄ (Spinel):

$$Fe_2(C_2O_4)_3 + Zn(C_2O_4) \xrightarrow{\Delta T} ZnFe_2O_4 + 4 CO + 4 CO_2$$

- 1. Dissolve 1 equivalent Fe oxalate and Zn oxalate in water
- 2. Partial evaporatation of water ---> powder and some remaining water
- 3. filtration
- 4. Annealing of precipitate

Thermal Decomposition Reaction
Precursor methods/thermal decomposition reaction

Thermal decomposition of suitable precursors containing the desired atoms in correct stoichiometric proportions

Special case: Redox compounds

 $(NH_4)_2Mg(CrO_4)_2 \cdot 6 H_2O \longrightarrow MnCr_2O_4 + N_2 + 10 H_2O$ Cr⁶⁺ ---> Cr³⁺; N³⁻ ---> N⁰

Precursor	Product
La[Co(CN) ₆] · 5 H ₂ O	LaCoO ₃
$Ba[TiO(C_2O_4)_2]$	BaTiO ₃ (Perowskit (CaTiO ₃))
$M_3Fe_6O_3(OH)(OAc)_{17} \cdot 12$ Pyridin	MFe ₂ O ₄ (M = Mg, Mn, Co, Ni) (Spinell)
$(NH_4)_2M(CrO_4)_2 \cdot 6 H_2O$	MCr_2O_4 (M = Mg, Ni) (Chromite)
$(NH_4)_2M(CrO_4)_2 \cdot 2 NH_3$	MCr ₂ O ₄ (M = Cu, Zn) (Chromite)
MCr ₂ O ₇ · 4 Pyridin	MCr ₂ O ₄ (M = Mn, Co) (Chromite)
$MFe_2(C_2O_4)_3 \cdot x N_2H_4$	MFe ₂ O ₄ (M = Mg, Ni, Co, Ni, Zn) (Ferrite)

Thermal decomposition of Mn(SCN)₂(Pyrazine)₂

Thermal decomposition reaction [(hexyl)₄N]₂[MoS₄]

Thermal decomposition of [(hexyl)₄N]₂[MoS₄]

Thermal decomposition of [(hexyl)₄N]₂[MoS₄]

Intercalation and Deintercalation Reaction

Intercalation: reversible uptake of atoms, ions, charged or neutral molecules (guests) without significant changes of the host lattice structure. Reversible process: deintercalation

Characteristics of intercalation reactions

- Stable host lattice with empty sites for guests
- \blacktriangleright Empty sites must be interconnected, E_{act} for diffusion must be small
- Intercalation/deintercalation must be reversible
- Only small changes of host lattice structure topotactic reactions: defined relationship between structure before and after intercalation reaction, at least in one crystallographic direction
- Reactions at low temperatures leads bonds in host intact
- Kinetics dominates, metastable products
- Concentration of guests can be directed, control of chemical and physical properties
- Depending on electronic structure of host: intercalatio is accompanied by electron-ion transfer

Synthetic aspects of intercalation reactions

- Reaction types: solid-solid, solid-liquid, solid-gas
- > Intercalation chemically or electrochemical
- Often: guest supllied in excess
- > Control of guest concentration: time-temperature profiles, kinetics can be monitored
- Reaction conditions: host lattice should not be destroyed
- Reaction containers/vessels: depend on conditions
- Choice of host lattices and guests: "rational synthesis"

Synthesis of air and moisture sensitive solids - expensive solution

> Charakteristics of glove boxes:

- > Very low level of O_2 and H_2O
- > Different atmospheres possible (Ar / N_2)
- Special boxes for handling of solvents
- Microscope to manipulate small crystals
- Atmosphere is cleaned by catalysts and molecular sieves

Less expensive solution - Schlenk line

Intercalation reaction: battery

Polymer electrolyte

Schubert, Hüsing, Synthesis of Inorganic Materials

Host lattices

Host lattice rigid Size of guest restricted Dimension in nm range

Host lattices <u>flexible</u> Size of guest more or less not restricted

3D channel structure

2D layers

Intercalation reaction types

Insulators:

- nearly no change of physical properties due to intercalation, see e.g. Zeolites, Alumosilicates, Metallophosphates
- \rightarrow Mainly ion exchange, catalysis, gas sorption

Conducting hosts:

Drastic changes of physical properties, see e.g. gpahite, TMC, V_2O_5 , MoO_3 , ZrNCI etc.

 \rightarrow batteries

Example: KC₈

 \rightarrow 2D layer

Color: gold

Interlayer separation d: depends on concentration and guest type

Rüdorff \rightarrow Problem: change from stage 1 to stage 2 etc., cooperative mechanism

Model of Daumas-Herold

- > All layers are involved
- > Different local concentrations, islands smaller than crystal dimensions
- Domain structure with regularly stacked islands
- > Thermodynamic properties of guests determine domains
- Regular stacking in equilibrium

TiS_3 : change of structure during intercalation

Arrangement of amphiphilic molecules

Intercalation of polymers: synthesis strategy

- 1. Synthesis of MoS₂ via HT-route
- 2. Intercalation with n-BuLi
- 3. Exfoliation (Delamination) by treating with H₂O/sonication, colloidal dispersion
- 4. Reaction with polymers leads to restacking
- 5. Precipitation by adding electrolytes or by evaporation of solvent (flocculation = Aggregation)

Graphene analogues of layered materials: exfoliation by sonication

Coleman et al., Science 331, 568, 2011

Hydro-/Solvothermal Syntheses

Solvo- and hydrothermal syntheses

Characteristics:

heterogeneous reactions in solvents above boiling point of solvent – autogeneous

pressure

- > very often: isothermal
- Solvothermal: general term
- Hydrothermal water as solvent
- Ammonothermal reactions in ammonia

Applications:

- Synthesis of new compounds
- Preparation of single crystals, recrystallization
- Preparation of zeolites, porous materials, gem stones
- Industrial processes like Bayer process

Advantages:

- relatively low T leaves molecular building groups intact
- high solubility of not easily dissoluble compounds
- short diffusion paths, fast reactions, high yield, open structures

Often: Teflon due to inertness

Selected parameters influencing reaction paths and products

Syntheses of zeolits and porous materials

General composition of zeolites:

$M_{x/n}[AI_xSi_yO_{2(x+y)}] \cdot z H_2O$

- M = group 1 or 2 metal, organic caions also possible
- any Si/Al ratio

Discovery:

1756, Cronstedt (boiling stones)

Selected applications:

- ion exchange
- catalysts
- molecular sieves
- Gas sorption
- non-linear optical materials (NLO)

The template effect

The template effect ??????

TMA⁺

TEA⁺, EDA, Ethanolamine, Propanolamine, Alcohol, Glycerin, Morpholine, Hexandiole, TPA⁺

Structures of zeolites

- primary units: tetrahedra T
- tetrahedra share common corners
- > only Si-O-Al and Si-O-Si-interconnection
- no Al-O-Al-joints (Loewenstein rule)
- > extremly flexible T-O-T-angles: 100 180° large structural diversity
- formation of secondary building units (SBU)

- 6-Rings: six corner-linked T

Zeolites composed of β -cages (Sodalit cages)

Sodalith (SOD)

Faujasite

 \rightarrow Ion exchange, catalysis

Formation of ZSM-5

V/p diagramm of water

Solubility of SiO_2 in water

Solubility of SiO_2 in water

Increase of solubility:

Add mineralisator Formation of dissolved species

Example:

Crystallization of Quartz

$$SiO_2 + 2 OH^- \implies SiO_3^{2-} + H_2O$$

Hydrothermal synthesis

Stabilisation of unusual oxidation states

→ ferromagnetic CrO_2 (Rutil structure): Cr_2O_3 and CrO_3 at 350°C high pressure of O_2 suppresses decomposition of CrO_2

$$CrO_3 \rightarrow CrO_2 + \frac{1}{2}O_2$$

 $Cr_2O_3 + CrO_3 \rightarrow 3 CrO_2$ \rightarrow pressure: 440 bar

<u>Y-Al-Garnet</u>: (YAG = $Y_3AI_5O_{12}$) \rightarrow IR-Laser (1064 nm)

Solubility of educts is different: Y_2O_3 und AI_2O_3

 \rightarrow Autoklav with temperature gradient

Formation mechanism

Synthesis of thiometallates

Thiometallates with defined optical bandgap

Many more methods are established technical, chemical and physical backgrounds –

much more time required