How to build a catalytic test reactor

Raoul Naumann d'Alnoncourt

Modern Methods in Heterogeneous Catalysis Research WS 2010/2011

07.01.2011

• i.e.:

guidelines for building a set-up to investigate solid catalysts for gas phase reactions using a fixed bed pfr (plug flow reactor)

commercial set-ups preferred for other reactions

overview

three sections of a set-up:

- gas delivery system
 - permanent gases
 - vapors of condensable substances
 - mixing unit
 - pressure controller (if needed)
- reactor with temperature control
 - reactor tube
 - oven/cryostat

• analytics with sampling device

- GC
- MS

overview

Fig. 1 Scheme of a continuously operated flow-type unit with a fixed-bed reactor for studying a gas-phase reaction on a solid catalyst. A is the carrier gas; B and C are solids or liquids at room temperature and vaporizable at elevated temperature.

gas delivery system: permanent gases

 if possible from central gas supply: He, N₂, Ar, H₂, O₂ (p<10 bar)

 special gases from cylinder in cabinet: Hydrocarbons, NH₃, calibration mix

 high pressure gas from cylinder in cabinet gas delivery system: permanent gases

parts of a typical gas line in usual order:

- pressure reducing valve
- check valve
- filter
- mass flow controller
- shut-off valve

connect by stainless steel tubing (1/8") stainless steel parts preferred brass or Cu cheaper, but less robust

- pressure reducing valve
 - if part of central gas supply: no problems
 - in case of gas cylinder:
 - gas type (toxic, corrosive, oxygen ...)
 - gas purity
 - inlet pressure
 - outlet pressure
 - one stage/two stage

gas delivery system: permanent gases

- check valve
 - to prevent mixing of gases
 - dangerous mixtures (H_2/O_2)
 - contamination
 - mandatory

gas delivery system: permanent gases

- filter
 - to protect mass flow controller
 - suitable filter size: 2 µm
 - pressure drop normally no problem

- mass flow controller
 - generally (AC, FHI): EL-FLOW, Bronkhorst
 - thermal MFC, linear range: 2 98 %
 - nominal range depends on gas
 - gas change possible
 - calibrated for several gases
 - calibration factors from database (fluidat.com)
 - special version for high pressure

gas delivery system: permanent gases

- shut-off valve
 - closed MFC not 100 % tight
 - in position to minimize dead volume
 - working pressure
 - gas purity

gas delivery system: permanent gases

problems with hydrocarbon gas lines:

- flow often not stable
- sensitive to pressure changes possible solutions:
- adjust MFC parameters (S. Engelschalt)
- buffer volume
- flow restrictor (capillary)
- special pressure reducing valve

problems with gas purity:

 impurities in cylinder: use cleaning traps hydrosorb, oxisorb

 impurities due to leaks: check connections exchange valves (diffusion along concentration gradient) gas delivery system: condensable substances

two possibilities:

- saturators
 - cheap and easy to use
 - no mixtures
 - atmospheric pressure
- evaporators
 - mixtures and high pressure possible
 - hard to control

heating of all downstream parts

gas delivery system: condensable substances

saturators:

- based on thermodynamic equilibrium
- p_{vap} (p_i)as function of T in databases
- p_i/p_{tot} = molar fraction
- $p_{tot} = p_{atmospheric}$ + pressure drop
- errors:

wrong p_{tot} , T incomplete saturation (τ too short) cold/hot spots

saturator designs:

gas delivery system: condensable substances

mixing two vapors using saturators:

- hard to control
- not recommended

gas delivery system: condensable substances

evaporators:

- molar fractions calculated from flows
- often oscillations due to
 - pulsation of feed
 - droplets at nozzle
 - evaporation in feed line
 - bad temperature control

• simple:

tee pieces and shut-off valves

advanced: valco switching valves

- in case of condensable substances: avoid condensation/adsorption (heating)
- filter before reactor as static mixer

• simple:

tee pieces and shut-off valves

advanced: valco switching valves

- in case of condensable substances: avoid condensation/adsorption (heating)
- filter before reactor as static mixer

simple:

- purging time after gas change
- minimize dead volume

advanced:

- 4 port valve for fast switching
- purging before switching

advanced:

- special 6 port valve for mixing
- fast switching
- purging before switching

heating:

- to avoid condensation or adsorption
- including reactor connections and exhaust lines
- heating tape coiled around all lines
- large drying oven (recommended)

experiments at high pressure:

- needle valve and pressure gauge in exhaust line
 - cheap, but not controlled
 - change with time and RT
- back-pressure regulator in exhaust line
 - stable pressure
 - can be monitored
 - expensive

gas delivery system

- check all parts used
- suitable for
 - applied temperature
 - applied pressure
 - educts and products
 - desired gas purity
- if possible use parts with Swagelok connectors (1/8", 1/4", 6 mm)

gas delivery system: metal connection

Swagelok connection

- standard metal connection at AC, FHI
- many parts available
- no workshop needed
- reusable
- safe and leak tight
- widely used

gas delivery system: swagelok connection

first assembly

preswaging

Fig. 1

High-pressure applications and high safety-factor systems: Further tighten the nut until the tube will not turn by hand or move axially in the fitting.

reassembly

Prior to disassembly, mark the tube at the back of the nut; mark a line along the nut and fitting body flats.

Use these marks to ensure that you return the nut to the previously pulled-up position.

Mark the nut at the 6 o'clock position.

While holding the fitting body steady, tighten the nut one and one-quarter turns to the 9 o'clock position.

For 1/16, 1/8, and 3/16 in.; 2, 3, and 4 mm tube fittings, tighten the nut only three-quarters turn to the 3 o'clock position.

Insert the tube with preswaged ferrules into the fitting until the front ferrule seats against the fitting body.

Over 1 in./25 mm sizes: If needed, reapply lubricant lightly to the body threads and the rear surface of the back ferrule.

While holding the fitting body steady, rotate the nut with a wrench to the previously pulled-up position, as indicated by the marks on the tube and flats. At this point, you will feel a significant increase in resistance. Tighten the nut slightly.

reactor types

Tab. 1 Summary of relative reactor ratings (L = low, M = medium, H = high)

Aspect	Reactor type							
	PFR Differential fixed bed	PFR Integral fixed bed	PFR Solids transport (riser)	CSTR External recirculation	CSTR Internal fluid recirculation	CSTR Spinning catalyst basket	Batch Internal fluid recirculation	
Ease of use	н	н	н	М-Н	М	L-M	М	
Ease of construction	н	н	L	М	М	L-M	М	
Cost	L	L	н	L-M	M-H	M-H	М	
Ease of sampling and analysis	М	Н	L	Н	н	Н	М	
Approach to ideal type	Н	Н	М	н	M-H	L-M	Н	
Fluid—catalyst contact	Н	Н	М	Н	M-H	L-M	Н	
Isothermicity	Н	M-H	Н	M-H	Н	М	Н	
Temperature measurement	н	Н	Н	Н	M-H	L	н	
Kinetics	Н	Н	М	М	M-H	L-M	М	
Deactivation noticed	н	н	L	М	М	М	L	
GLS use	L-M	М-Н	L	M-H	M-H	М	Н	

reactor: plug flow reactor

- ideal reactor
- tube reactor
- continuous flow
- turbulent flow
- no velocity gradients
- perfect mixing in radial direction
- no mixing in axial direction

laminar flow

reactor: Reynolds number

$$\mathsf{Re} = \frac{\rho \cdot u \cdot L}{\mu}$$

ρ: fluid density
u: fluid velocity
μ: fluid viscosity
L: characteristic length

- Re characterizes fluid behavior
- empty tubes: L = tube diameter

Re<2500 → laminar; Re>4000 → turbulent

packed beds: L = particle diameter

Re<10 \rightarrow laminar; Re>2000 \rightarrow turbulent

 in lab reactors usually no turbulent flow but: tube diameter as low as possible, particle diameter as large as possible, flow as high as possible

reactor: residence time distribution of PFR

CSTR: •ideal reactor •total backmixing

changing feed pulse response

reactor: material

• glass:

cheap, inert, transparent, only low temperature, low pressure

• quartz:

transparent, inert, high temperature, only low pressure

• stainless steel:

robust, leak-tight, high pressure, only low temperature

• GLT (glass-lined tubing): like stainless steel, but inert

reactor: connection to gas delivery system

for SS/GLT:

Swagelok connection

VCR connection

reactor: connection to gas delivery system

for glass/quartz:

- Cajon UltraTorr cheap, easy to use, not very leak tight
- KF flange UHV tight, more reliable, expensive
- glass/metal junction highly leak tight, expensive, not mechanically stable

reactor: geometry

mainly two types:

- straight tube
 - cheap
 - easy to use
 - may require a split tube oven
- U-tube
 - preheating of feed
 - compact
 - transfer to glove box

reactor: internal thermocouple

reactor: heating

for high T > 400 °C:

- ceramic or quartz tube with heating tape
 - cheap
 - low isothermicity
- commercial furnace, e.g. Carbolite, Reetz
 - expensive
 - better isothermicity

better: vertical position caveat: chimney effect

for medium T < 400 °C:

- furnace built by FHI workshop
- metal block (Cu, Al, SS) with heating cartridges
- very good isothermicity
- very good contact to reactor possible

reactor: heating (cooling)

for low T:

- thermostat/cryostat with circulation pump, Julabo, Huber, Lauda
- U-tube in bath
- glass reactor with cooling jacket

fluid dynamics and heat transport: long and thin catalyst bed best caveat: pressure drop

parameters:

- bed diameter (reactor id)
- bed length
- particle size

parameters interconnected

reactor: catalyst bed

- bed length > 5 times bed diameter
- particle size as large as possible
- particle size < 1/10 of reactor id
- typical values:
- reactor id: 4 6 mm, bed length > 20 mm
- particle size: 400 200 µm (pressing, crushing sieving)
- dilution with inert material (SiC, up to 1:10) for heat exchange or bed length

reactor: test for excluding transport limitations

- correct rates only measured in kinetic regime
- rates independent of catalyst particle size L or gas velocity u

Tab. 4	Apparent catalyst r	ate behavior (depending on	rate-controlling regime	(isothermal case)
--------	---------------------	----------------	--------------	-------------------------	-------------------

Controlling process	Apparent order	Apparent activation energy	Dependency L	Dependency u
Kinetics	п	E _a (true)	_	_
Internal diffusion	(n + 1)/2	$\frac{1}{2}E_{a}(true)$	1 <i>/L</i>	-
External mass transfer	1	\sim 0	$L^{m-2[a]}$	u ^{m[a]}

^a *m* represents the power of the Reynolds number in the Sherwood correlation in Table 2.

reactor: test for excluding transport limitations

Diagnostic tests for (a) extraparticle limitations and (b) intraparticle limitations.

analytics: gas chromatography

- sample injected into a stream of carrier gas (e.g. via sample loop)
- analytes interact with a column and are separated according to size or polarity

analytics: gas chromatography

analytics: gas chromatography

advantages:

- high sensitivity
- stable sensitivity
- high reproducibility
- easy data processing

disadvantages:

- method development
- species identified by retention time only
- demands maintenance
- isotopes not separated
- slow (steady states)

analytics: mass spectrometry

ionization of gas molecules
separation by ion mass
detection by SEM
fragmentation pattern

concentrations calculated from fragmentation patternspatterns often overlap

Components	Fragments									
-	Fr[28]	Fr[39]	Fr[41]	Fr[43]	Fr[44]	Fr[45]	Fr[56]	Fr[58]	Fr[60]	Fr[72]
СО	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Propylene	0.04	0.83	1.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
Propane	3.37	1.00	0.70	1.07	1.19	0.04	0.00	0.00	0.00	0.00
CO2	0.18	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
Acrolein	1.91	0.08	0.02	0.04	0.08	0.00	1.00	0.00	0.00	0.00
Acetone	0.40	0.20	0.08	4.00	0.08	0.00	0.00	1.00	0.00	0.00
Acetic acid	0.78	0.02	0.13	2.22	0.22	2.02	0.00	0.00	1.00	0.00
Acrylic acid	1.26	0.02	0.06	0.17	0.74	0.67	0.05	0.00	0.00	1.00

 $I_{28} = I_{CO} \times 1.00 + I_{\text{propylene}} \times 0.04 + I_{\text{propane}} \times 3.37 + I_{CO2} \times 0.18 + I_{\text{Acrolein}} \times 1.91 + I_{\text{Acetone}} \times 0.40 + I_{\text{AceticAcid}} \times 0.78 + I_{\text{AcrylicAcid}} \times 1.26$

analytics: mass spectrometry

advantages:

- species identified by fragmentation pattern
- fast (time resolved)
- isotopes separated
- sampling easy

disadvantages:

- complex data processing
- lower sensitivity
- less stable sensitivities
- background not stable

starting point for literature research:

Kapteijn, F. and Moulijn, J. A. 2008. Laboratory Catalytic Reactors: Aspects of Catalyst Testing. Handbook of Heterogeneous Catalysis. 2019–2045. Weitkamp, J. and Gläser, R. 2008. Ancillary Techniques in Laboratory Units for Testing Solid Catalysts. Handbook of Heterogeneous Catalysis. 2045–2053.

This is the end.

Thanks for your attention...