

- Motivation
- Physisorption
- Chemisorption
- Outlook

Literature:

- 1. DIN ISO 9277: BET method
- 2. DIN 66136: Dispersion measurement of metals
- 3. DIN 66134: BJH method
- 4. Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids. London: Academic Press; 1999.
- 5. Neimark AV, Sing KSW, Thommes M. Surface Area and Porosity. Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA; 2008.
- 6. Bergeret G, Gallezot P. Particle Size and Dispersion Measurements. Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA; 2008.
- 7. Quantachrome manuals

What do we obtain?

- specific surface area of a substance
- specific surface area of a part of a substance (i.e. of the metal particles on a support)

Why do we need such quantities?

- comparability of different charges of the same substance
- comparability of catalyst activity (... not given per gram)

Idea: surface area is a measure for the number of catalytic centers (but for sure not the number of active sites – no one knows how an active site looks like)

Weak adsorbate – adsorbens interactions – first level approximation:

Adsorption energy is constant in the first layer and different but nearly constant in the following multilayers

We measure the (in principle) whole surface area!

Physisorption What do we measure? - isotherms

IUPAC isotherm classification

- Saturation behaviour for high p/p_0
- concave convex
- "sharp knee point" B

How do we measure? Volumetric measurement

ideal gas law:

pV = nRT

- $V_{\rm a}~$ spezifisches Sorbatvolumen
- *p* Druck des Sorptivs
- 1 Probe
- 2 Dewargefäß mit flüssigem Stickstoff
- 3 Vakuumaggregat
- 4 Manometer
 - 5 kalibriertes Volumen

Bild 6: Volumetrische Apparatur

1. Dead volume measurement with He

- $V_{\mathrm{a}}\,$ spezifisches Sorbatvolumen
- p Druck des Sorptivs
- 1 Probe
- 2 Dewargefäß mit flüssigem Stickstoff
 - 4 Manometer 5 kalibriertes Volumen

3

Vakuumaggregat

Bild 6: Volumetrische Apparatur

Problems:

V₂ is unknown, T₂ is not well defined:

Quantachrome :

- 1. V_2 at RT with He
- 2. Pressure change with and without bath yields volume of ,,cold" and ,,warm" zone volume in V_2
- Cold and warm zone changeover volume should be minimized!
- Some adsorbens absorb also He!

2. Measurement with N₂

- $V_{\rm a}~$ spezifisches Sorbatvolumen
- p Druck des Sorptivs
- 1 Probe
- 2 Dewargefäß mit flüssigem Stickstoff
- 3 Vakuumaggregat
- 4 Manometer
- 5 kalibriertes Volumen

Bild 6: Volumetrische Apparatur

- 1. Certain amount of N_2 is dosed in V_1
- 2. Equilibration with V_2 yields new (lower) $p_1 = p_2$
- 3. Step one is repeated until the desired p
- 4. the lost amount is now in V_2 , i.e. in the ,,cold" and ,,warm" zone volume and the residual in the calculation is the adsorbed amount of N_2

Analysis of the isotherms the BET method

Brunauer, Emmett and Teller in the 1930s

$$\frac{p/p_0}{n_a(1-(p/p_0))} = \frac{1}{n_m C} + \frac{C-1}{n_m C} \cdot \frac{p}{p_0} \quad \text{with } n_a : \text{ adsorbed amount}$$

$$y = a + bx$$
Monolayer capacity $n_m = \frac{1}{a+b}$ BET constant C: $C = \frac{b}{a} + 1$
Specific surface area $a_s = n_m a_m L$ $a_m = 0.162nm$ for N₂
L: Avogadro number

BET equation, BET constant *C*, Langmuir equation as limit for C=1

$$\frac{p / p_0}{n_a (1 - (p / p_0))} = \frac{1}{n_m C} + \frac{C - 1}{n_m C} \bullet \frac{p}{p_0}$$

From the original theory: $C = e^{\frac{E_1 - E_L}{RT}}$

 E_1 is the adsorption energy of the first layer and E_L the liquefaction energy,

with $E_1 = E_L$ this transforms into the Langmuir equation

Isotherm classification

- IUPAC isotherm classification
- Saturation behaviour for high p/p₀ (pore filling)
- concave convex
- "sharp knee point" B
- Type I: Langmuir, "saturation"
- Type II: C > 2, sigmoid (S-shaped) non- or macroporous
- Type III: C < 2, weak interactions
- Type IV: C > 2, mesoporous, "saturation"
- Type V: C < 2, like III with ,,saturation"
- Type VI: stepwise (layer by layer) adsorption

H1: narrow distribution of relatively uniform(cylindrical-like) pores-delayed condensation and no network effects,analysis of the desorption branch

H2: complex pore structure, network effects are important, analysis of the adsorption branch

H3: non-rigid aggregates of plate-like particles or assemblages of slit-shaped pores - no saturation

H4: complex materials containing both micropores and mesopores

Neimark AV, Sing KSW, Thommes M. Surface Area and Porosity. Handbook of Heterogeneous Catalysis, Wiley; 2008. Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Often at $p/p_0=0.42$ for N_2 independent of the adsorbent

Neimark AV, Sing KSW, Thommes M. Surface Area and Porosity. Handbook of Heterogeneous Catalysis, Wiley; 2008.

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

BET method – example 2 # 9828 - Langmuir

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Reference materials for the BET method, measurement errors

Zertifizierte Referenzmaterialien für das BET-Verfahren

DIN ISO 9277:

measurement errors:

- Instrument (p, V, T, vacuum)
- Scatter of different measurement

Material	Bezeichnung	Bezugs-	Spezifische						
		queile	Oberflachea						
			m^2g^{-1}						
Silica ^b	BAM-PM-101	BAM	0,177						
Alpha-Alumina	BAM-PM-102	BAM	5,41						
Alumina	BAM-PM-103	BAM	156						
Alumina	BAM-PM-104	BAM	79,8						
Alpha-Alumina	BCR-169	IRMM	0,104						
Alpha-Alumina	BCR-170	IRMM	1,05						
Alumina	BCR-171	IRMM	2,95						
Quartz	BCR-172	IRMM	2,56						
Titania-Rutile	BCR-173	IRMM	8,23						
Tungsten	BCR-175	IRMM	0,181						
Carbon black	LGC2101	LGC	10,5						
Carbon black	LGC2102	LGC	69						
Silica (nonporous)	LGC2103	LGC	142						
Silica (mesoporous)	LGC2104	LGC	247						
Silica/Alumina	SRM 1897	NIST	258,32						
Silicon nitride	SRM 1899	NIST	10,52						
Silicon nitride	SRM 1900	NIST	2,85						
^a Die spezifische Oberfläche ist mit dem Stickstoffadsorptionsverfahren bei 77 K gemessen worden (Ausnahmen sind besonders gekennzeichnet).									
^b Gemessen mit Krypton bei 77 K.									

Strong adsorbate – adsorbens interactions – first level approximation for metal on a support:

Adsorption energy on the metal is constant in the first layer and **strongly** exceeds the adsorption energies on the support or in multilayers

We measure (in principle) the metal surface area!

Pretreatment is different from physisorption

- removal of water
- reduction of the metal (only!)

Quantachrome: Flow cell, reduction with H_2/Ar or CO, evacuation

Choice of adsorbate is crucial

- only adsorption on the metal
- no irreversibel subsurface absorption
- no volatile reaction products (carbonyles)
- no bulk reaction

How do we measure? Volumetric measurement

ideal gas law:

pV = nRT

- $V_{\rm a}~$ spezifisches Sorbatvolumen
- *p* Druck des Sorptivs
- 1 Probe
- 2 Dewargefäß mit flüssigem Stickstoff
- 3 Vakuumaggregat
- 4 Manometer
 - 5 kalibriertes Volumen

Bild 6: Volumetrische Apparatur

Chemisorption: analysis

Linear extrapolation to p = 0yields the volume of an adsorbed monolayer v_m

Fig. 4 Isotherms for the adsorption of CO on EUROPT-1 Pt/SiO_2 catalyst at room temperature from different laboratories for a pressure range 0–1.33 kPa (solid circles) and 10–50 kPa (open circles). (Adapted from Ref. [14].)

Chemisorption: analysis

Specific metal surface area:
$$A_M = \frac{v_m}{22414} Ln \frac{1}{m} a_m \frac{100}{wt} (m^2 g^{-1} metal)$$

metal dispersion:

$$D = \frac{v_m n}{22414m} \bullet \frac{100M}{wt}$$

- Vm volume of an adsorbed monolayer
- L Avogadro number
- n chemisorption stoichiometry
- m sample mass
- a_m surface area occupied by a metal atom
- wt metal loading
- M atomic mass of the metal

Comparison of different adsorptives for Pt, Pd and Rh

No.	Catalyst	Metal content wt%	Volumetric adsorption		TPR	TEM	D c)	
	Metal/Support		H/M	0/M	со/м ^{Б)}	Н/М	d _{VA} (Å)	T POM TEM
1	Pt / ALO-1	0.50 ^{d)}	1.25 (0.41)	0.55	1.22 (0.60)	0.98	10	1.14
2	Pt / ALO-4	0.50 ^{d)}	1.25 (0.43)	0,57	1.25 (0.52)	1.06	10	1.14
3	Pt / ALO-4	5.1 ^{d)}	1.14 (0.37)	0.48	0.72 (0.15)	0.83	18	0.63
4	Pt / SIO-2	0.50 ^{d)}	0.28 (0.10)	0.13	0.19 (0.026)	0.33	72	0.16
5	Pt / SAH	0.64 ^{e)}	0.76 (0.25)	0.36	0.82 (0.33)	0.68	18	0.63
6	Pt / SAL	0.72 ^{e)}	0.60 (0.22)	0.34	0.73 (0.30)	0.56	21	0.54
7	Pt / Z-1	0.50 ^{d)}	0.13 ^{f)} (0.07)	0.08 ^{f)}	0.29 (0.15)	0.04	82	0.14
8	Pd / ALO-4	0.50 ^{e}}	0.91 (0.28)	0.40	0.82 (0.27)	0.90	9	1.26
9	Rh / ALO-4	0.50 ^{e)}	0.92 (0.46)	0.91	1.29 (0.30)	0.79	9	1.22

Kunimori K, Uchijima T, Yamada M, Matsumoto H, Hattori T, Murakami Y. Appl Catal 1982;4(1):67-81.

Dirk Rosenthal, Electronic Structure, Department Inorganic Chemistry, Fritz-Haber-Institut der MPG, Berlin, Germany

Stuck A, Wartnaby CE, Yeo YY, Stuckless JT, AlSarraf N, King DA. An improved single crystal adsorption calorimeter. Surf Sci 1996;349(2):229-40.