

Vibrational spectroscopy in catalysis

Basic principles

08 January 2010

A. Trunschke, Department of Inorganic Chemistry, Fritz Haber Institute, Max Planck Society

Vibrational spectroscopy in catalysis

Most widely applied technique in catalysis

Accessible information

- phase composition
- surface functional groups
- adsorption sites
- surface deposites
- intermediates

Outline

- 1. Basic principles
- 2. Sample geometry techniques in FTIR
- 3. Applications
 - I. Lattice vibrations and surface functional groups
 - II. Adsorption sites adsorption of probe molecules
 - III. In-situ spectroscopy gas phase/liquid phase

Outline

- 1. Basic principles
- 2. Sample geometry techniques in FTIR
- 3. Applications
 - I. Lattice vibrations and surface functional groups
 - II. Adsorption sites adsorption of probe molecules
 - III. In-situ spectroscopy gas phase/liquid phase

Interaction of light with solid matter

Excitation of vibrations

Absorption of photons	Scattering		
Infrared	photons	electrons	neutrons
 spectroscopy Photoacoustic spectroscopy Sum Frequency Generation 	Raman	Electron energy loss spectroscopy	Inelastic neutron scattering

Infrared spectroscopy	
Transmission	
Emission	T=473K, <i>in-situ</i> at high temperatures, measurements in regions of support absorption
Reflection	Mirror reflection Reflection-Absorption (RAIRS)
	Attenuated total reflection (ATR)
	Diffuse reflection (DRIFTS)

Origin of molecular spectra

Total energy of a molecule or ion

 $E_{\text{total}} = E_{\text{el}} + E_{\text{vib}} + E_{\text{rot}} (+ E_{\text{trans}} \text{ thermodynamics, kinetic theory of gases})$

Discrete changes in state: Bohr's frequency condition for transfer of energy from an electromagnetic field to a molecule must be satisfied

$$\Delta E = hv, v = \frac{c}{\lambda}$$

h = 6.62606896(33) • 10⁻³⁴ Js = 4.13566733(10) • 10⁻¹⁵ eVs

Wavenumber (number of waves per cm ~ frequency shift)

$$\tilde{v} = \frac{1}{\lambda} = \frac{v}{c}$$
 $\Delta E = hc\tilde{v}$ 1 cm⁻¹ = 1.24 x 10⁻⁴ eV

Absorption of energy $\Delta E = E_2 - E_1$ $\tilde{v} = \frac{\Delta E}{hc}$

Electromagnetic spectrum

inirared region	(nm)	(cm ⁻¹)	(meV)	VIDIALIONS
far	1x10 ⁶ - 5x10 ⁴	10-200	1.2-25	lattice
mid	5x10 ⁴ - 2500	200-4000	25-496	molecular
near	2500 - 1000	4000-10000	496-1240	overtones

Energy levels of a diatomic molecule

Energy level diagram

Maxwell-Boltzmann distribution

$$R = \frac{P(\upsilon = 1)}{P(\upsilon = 0)} = e^{-\Delta E_{\upsilon}/kT}$$

 $\Delta E \ge kT$

 $k = 1,3806504(24) \cdot 10^{-23} \text{ J/K}$ = 8,617343(15) $\cdot 10^{-5} \text{ eV/K}$

kT = 208 cm⁻¹ at 293 K

Normally, only the transitions from v = 0 to v = 1 are observed

 $H_2(4160 \text{ cm}^{-1})$: R = 2.16 10⁻⁹

If ΔE_v becomes small, the population at v = 1 increases:

 $J_2(213 \text{ cm}^{-1})$: R = 0.27

Vibration of a diatomic molecule – harmonic oscillator

Classical mechanics

$$F = -K\Delta r = \mu a = \mu \frac{d^2 r}{dt^2}$$

Solution of differential equation:

$$r(t) = r_0 \cos(2\pi v t)$$

$$\nu = \frac{1}{2}\pi \sqrt{\frac{K}{\mu}}$$

K ... Force constant for the vibration

Vibration of a diatomic molecule – harmonic oscillator

Classical mechanics

$$v = \frac{1}{2}\pi \sqrt{\frac{K}{\mu}}$$
$$V(r) = \int_{0}^{x} F(r)dr = \frac{1}{2}Kr^{2}$$
$$V = 2\pi^{2}\mu v^{2}r^{2}$$

 μ ... reduced mass

K ... Force constant for the vibration

Vibration of a diatomic molecule – harmonic oscillator

Potential energy curve of a harmonic oscillator

Selection rule: $\Delta v \pm 1$

Quantum mechanics $H\Psi = E\Psi$ H = T + V $V(r) = \int_{0}^{x} F(r)dr = \frac{1}{2}Kr^{2}$ $T = \frac{1}{2}mv^2 = \frac{1}{2\mu}p^2$ $\frac{d^2\Psi}{da^2} + \frac{8\pi^2\mu}{h^2} \left(E - \frac{1}{2}Kq^2\right)\Psi = 0$ $E_{\upsilon} = h\nu\left(\upsilon + \frac{1}{2}\right) = hc\tilde{\nu}\left(\upsilon + \frac{1}{2}\right)$ v = 0, 1, 2, ... $v = \frac{1}{2}\pi \sqrt{\frac{K}{\mu}}$

12

Vibration of a diatomic molecule

Actual potential of a diatomic molecule

Selection rule: $\Delta v \pm 1, 2, 3, ...$

Overtone: multiples of the fundamental

Combination band: sum or difference of two or more fundamentals

Anharmonicity

$$E_{\upsilon} = h\omega_e \left(\upsilon + \frac{1}{2}\right) - hcx_e \omega_e \left(\upsilon + \frac{1}{2}\right)^2 + \cdots$$

$$x_e \cdots$$
 magnitude of anharmonicity
 $E_v - E_0 = hv = hc\tilde{v}$
 $\tilde{v} = \frac{E_v - E_0}{hc} = v\omega_e - x_e\omega_e(v^2 + v) + \cdots$

Fundamental: $\widetilde{v}_1 = \omega_e - 2x_e \omega_e$ First overtone: $\widetilde{v}_2 = 2\omega_e - 6x_e \omega_e$ Second overtone: $\widetilde{v}_3 = 3\omega_e - 12x_e \omega_e$

Vibration of a diatomic molecule

Relationships between vibrational frequency, reduced mass, and force constant

		and overtones of CO
Fundamental:	$\tilde{v}_1 = \omega_e - 2x_e\omega_e$	2143.31 cm ⁻¹
First overtone:	$\tilde{v}_2 = 2\omega_e - 6x_e\omega_e$	4259.70 cm ⁻¹
Second overtone:	$\widetilde{v}_3 = 3\omega_e - 12x_e\omega_e$	6349.17 cm ⁻¹
$\omega_e = 2170.23 \ cm^{-1}$	$x_e \omega_e = 13.46 \ cm^{-1}$	
$\omega_e = \frac{1}{2\pi c} \sqrt{\frac{K}{\mu}}$	$K = 4\pi^2 c^2 \omega_e^2 \mu$	
$=\frac{4\cdot(3.14)^2(3\cdot10^{10})^2}{\omega_a^2}\omega_a^2$	$\mu = (5.8883 \cdot 10^{-2})\omega_a^2 \frac{12 \cdot 12}{12}$	$\frac{16}{10} = (5.8883 \cdot 10^{-2})(2170)^2 6.8584$
$6.025 \cdot 10^{23}$	· · · · · · · · · · · · · · · · · · ·	-16

 $K = 1900 \ N/m$

K =

Observed stretching frequency

Vibration of a diatomic molecule

Relationships between vibrational frequency, reduced mass, and force constant

Theoretical calculation of force constants:

Nakamoto, p. 14

Calculation of the total electronic energy of a molecule as a function of the displacement near the equilibrium position and calculation of its second derivative

Difficult to derive a general theoretical relationship between K and D

Empirical relationships

Relationships between vibrational frequency, Mo-O bond distance and order

Figure 1. Mo-O correlation plot relating bond distance (Å) to stretching frequency (cm^{-1}) . The 108 data points are fit to the exponential function v $(cm^{-1}) = 32\,895 \exp(-2.073R)$, where R is the bond distance in angströms.

F.D. Hardcastle, I.E. Wachs, J. Raman Spectrosc. 21 (1990) 683.

Empirical relationships

Relationships between vibrational frequency, V-O bond distance and order

Figure 1. Correlation plot relating V–O bond lengths (Å) to V–C stretching frequencies. The data points are fit to the exponential function $\nu = 21349 \exp(-1.9176R)$, where R is the V–O bond length in angstroms: ν is in cm⁻¹.

Figure 2. Correlation plot relating vanadium-oxygen bond strength (in valence units) to vanadium-oxygen stretching frequencies, according to eq 4.

s(V-0) = [0.2912 In (21349/v)]^{-5.1}

F.D. Hardcastle, I.E. Wachs, J. Phys. Chem. 95 (19901) 5031.

Rotational fine structure of diatomic molecules

Vibrational transitions are accompanied by rotational transitions

Rotational fine structure is not observed in solid or liquid phase or in solutions due to molecular interactions

Normal vibrations of polyatomic molecules

In polyatomic molecules, all nuclei perform their own anharmonic oscillations

- N number of atoms in a molecule
- 3N number of coordinates to describe the molecule= degrees of freedom of movement of the molecule
- 3 degrees of freedom for translation in *x*, *y*, *z*
- 3N-3 degrees of freedom for rotation and vibration
- 3N-5 degrees of freedom for vibration of a linear molecule
- **3N-6** degrees of freedom for vibration of a nonlinear molecule

Any of the complicated vibrations of a molecule may be represented by a superposition of 3N-5 (linear molecules) or 3N-6 (nonlinear molecules) *normal vibrations*

Normal vibrations of polyatomic molecules

Normal vibrations of polyatomic molecules

21

Symmetry and selection rules

The vibration is IR active if the dipole moment is changed during the vibration

$$\left[\mu\right]_{v'v''} = \int \Psi^*_{v'}(Q_a) \mu \Psi_{v''}(Q_a) dQ_a \neq 0$$

The selection rule is determined by the symmetry of the molecule

The intensity of the infrared band is proportional to the change in the dipole moment

Fundamental modes of vibration – linear molecules

Fundamental modes of vibration - nonlinear molecules

24

Assignment of vibrations

Group frequency concepts state:

Groups of atoms (including heavy atoms or multiple bonds) absorb over a narrow range of frequencies regardless of the rest of the molecule

Functional groups in molecules may be treated as independent oscillators

4000 – 2500 cm⁻¹	H-X $(X = O, N, C, S)$
2500 – 2000 cm ⁻¹	triple bond region (e.g. CO)
2000 – 1500 cm ⁻¹	double bond region (e.g. carbonyl)
1500 – 500 cm ⁻¹	fingerprint region C-X (X = N, O, S, halides)
200 – 450 cm⁻¹	M-X (X = C, O, N, S)

Assignment of vibrations

Group frequency charts:

(b) Oxygen stretching and bending frequencies

Outline

- 1. Basic principles
- 2. Sample geometry techniques in FTIR
- 3. Applications
 - I. Lattice vibrations and surface functional groups
 - II. Adsorption sites adsorption of probe molecules
 - III. In-situ spectroscopy gas phase/liquid phase

FTIR spectrometer

FTIR spectrometer

 $B(\tilde{v})$

29

FTIR spectrometer

Tabelle 3-2.	Nutzbare Spektralbereiche verschiedener Strahlteiler
(in cm ⁻¹).	

Strahlteiler	$\widetilde{\nu}_{\mathrm{max}}$	$\widetilde{\nu}_{\min}$	
Quarz	15600	2700	_
CaF ₂ /Fe ₂ O ₃	12000	1200	
KBr/Ge	6500	450	
CsI/Ge	7000	220	
Mylar (6 µm)	500	50	
Mylar (12 µm)	250	25	
Mylar (25 µm)	120	20	
Mylar (50 µm)	55	15	

Mylar ... Polyethylentherephthalat

Günzler, p. 63

How to measure FTIR spectra of solid catalysts?

Sample preparation	geometry	remarks
KBr technique	transmission	Quantitative measurements difficult Chemical interaction with KBr may happen Differences in refractive index Particle size effect of embedded material, differences in refractive index (Christiansen effect) No pretreatment, no adsorption
Suspension in paraffin oil (Nujol®)	transmission	
Self supported wafer	transmission	Pretreatment and adsorption possible
powder	DR	Used in <i>in-situ</i> FTIR spectroscopy
Powder or suspension	ATR	Used to study solid-liquid interface

Transmission spectra

$$I_0 = I_r + I_s + I_a + I$$

How to deal with phase boundary reflection?

 fraction of reflected light *I_r* can be eliminated through reference measurement with same materials (cuvette + (solvent))

Transmitted light and absorption properties

$$dI = -I \ k \ dx = -I \ \kappa \ c \ dx$$

decrease of I in an infinitesimally thin layer

c: molar concentration of absorbing species [mol/m⁻³] κ : the molar napierian extinction coefficient [m²/mol]

$$\int_{I_0}^{I} \frac{dI}{I} = -\int_{x=0}^{x=l} \kappa c \, dx$$
$$\ln \frac{I}{I_0} = -\kappa c \, l$$

separation of variables and integration over sample thickness I

Transmitted light and absorption properties

$$\tau = \frac{I}{I_0} = e^{-\kappa c l} = 1 - \alpha$$

$$A_e = B = \kappa c \ l = -\ln(\tau)$$
$$\log e = 0.434$$

$$A_{10} = \varepsilon c \ l = -\log(\tau)$$
$$\varepsilon = 0.434\kappa$$

Lambert-Beer Law

napierian absorbance Napier-Absorbanz

(decadic) absorbance *dekadische Absorbanz*

standard spectroscopy software uses A₁₀!

extinction
absorbanceE (means absorbed + scattered light)
 $A (A_{10} \text{ or } A_e)$ optical densityO.D.all these quantities are DIMENSIONLESS !!!!

Transmission spectra- loss due to scattering

$$I_0 = I_r + I_s + I_a + I$$

Rayleigh and Mie scattering

d < λ : Rayleigh-Scattering isotropic distribution

d = λ : Mie-Scattering in forward and backward directions

h∙υ

d >> λ : Mie-Theory approaches laws of geometric optics

Loss due to scattering

Infrared region	Wavelength (nm)	Wavenumber (cm ⁻¹)	Energy (meV)	Vibrations
far	1x10 ⁶ - 5x10 ⁴	10-200	1.2-25	lattice
mid	5x10 ⁴ - 2500	200-4000	25-496	molecular
near	2500 - 1000	4000-10000	496-1240	overtones

- Scattering is negligible in molecular disperse media (solutions)
- Scattering is considerable for colloids and solids when the wavelength is in the order of magnitude of the particle size

Typical catalyst particles

- Need theory that treats light transfer in an absorbing and scattering medium
- Want to extract absorption properties!

Diffuse reflection (DR)

Intensity of diffusely reflected light independent of angle of incidence

Result of multiple reflection, refraction, and diffraction (scattering) inside the sample

Randomly oriented crystals in a powder: light diffusely reflected

Diffuse reflection (DR)

Intensity of diffusely reflected light independent of angle of incidence

Result of multiple reflection, refraction, and diffraction (scattering) inside the sample

Randomly oriented crystals in a powder: light diffusely reflected

Flattening of the surface or pressing of a pellet can cause orientation of the crystals, which are "elementary mirrors" Causes "glossy peaks" if angle of observation corresponds to angle of incidence Solution: roughen surface with (sand)paper or press between rough paper, or use different observation angle!

Quantification of DRIFT spectra: Kubelka-Munk function

2 constants are needed to describe the reflectance: absorption coefficient K, function of the frequency scattering coefficient S

for $K \rightarrow 0$ (no absorption) $R_{\infty} \rightarrow 1$, i.e. all light reflected for $S \rightarrow 0$ (no scattering) $R_{\infty} \rightarrow 0$, i.e. all light transmitted or absorbed

The Kubelka-Munk function transforms the measured spectrum R(v) into the absorption spectrum K(v)

$$F(R_{\infty}) = \frac{\left(1 - R_{\infty}\right)^2}{2R_{\infty}} = \frac{K}{S}$$

Kubelka-Munk function remission function

Transmission vs. reflection spectroscopy

 For quantification and to be able to calculate difference spectra: calculate absorbance / Kubelka-Munk function

Spectroscopy in transmission

Double beam spectrometer: direct comparison sample - reference Single beam spectrometer: consecutive measurement

Mirror optical accessory for reflection spectroscopy

can be placed into the normal sample chamber (in line with beam), no rearrangement necessary
For reference, consecutive

measurement of white standard

Specular reflection is strongest in forward direction Collect light in off-axis configuration

- First ellipsoidal mirror focuses beam on sample
- Second ellipsoidal mirror collects reflected light
- 20% of the diffusely reflected light is collected

Transmission vs. reflection spectroscopy

Transmission: self-supporting wafer Reflectance: powder bed

Spectra can have very different appearance

Transmittance decreases, reflectance increases with increasing wavenumber

Transmission vs. reflection spectroscopy

Vibrations of surface species may be more evident in DR spectra

Attenuated Total Reflection (ATR)

www.perkinelmer.de

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}$$

The refractive index of the crystal n_1 must be significantly greater than that of the sample n_2

Crystal materials: ZnSe, Si, Ge, C (diamond)

Attenuated Total Reflection (ATR)

Depth of penetration (I=1/e)

$$d_p = \frac{\lambda_1}{2\pi (\sin^2 \theta - n_{21}^2)^{1/2}}$$
$$\lambda_1 = \lambda/n_1$$
$$n_{21} = n_2/n_1$$

Germanium has by far the highest refractive index of all the ATR materials available which means that the effective depth of penetration is approximately 1 micron

This is an advantage when analyzing highly absorbing materials (carbon)

Figure 7. Applying pressure to a solid sample on the Universal diamond ATR top-plate.

www.perkinelmer.de

Reflection Absorption Infrared Spectroscopy (RAIRS, IRAS)

- grazing-incidence reflection of the IR light
- studies of single crystals in presence of gas phase
- Iow sensitivity owing to the small number of adsorbing molecules
- selection rule: vibrational modes which give rise to an oscillating dipole perpendicular (normal) to the surface are IR active

Review: Sheppard & Erkelens, Appl. Spec. 38 (1984) 471.

Outline

- 1. Basic principles
- 2. Sample geometry techniques in FTIR
- 3. Applications
 - I. Lattice vibrations and surface functional groups
 - II. Adsorption sites adsorption of probe molecules
 - III. In-situ spectroscopy gas phase/liquid phase

FTIRS: Study of bulk structure and surface sites

Surface center (active site):

Microscopic group of atoms, which determines the specific chemical activity of the surface

- surface sites of supported metal particles
- electron donating oxygen atoms
- coordinatively unsaturated metal cations
- hydroxyl-hydrate cover

Vibration of metal-oxygen bonds on oxide surfaces

Davydov,	р.	32
----------	----	----

Table 2.1. Absorption bands in the IR spectra of relevant oxide systems after high-temperature oxidation treatment.

Oxide	Fundamental frequency region (cm ⁻¹)	Region above the fundamental frequency (cm ⁻¹)		
Cr_2O_3	625, 550, 435, 407	1015, 995, 980, 890, 820		
MnO_2	615, 400	1170, 1140, 1120, 1065, 1040, 980		
Fe_2O_3	560, 470	960, 925		
NiO	650, 465	1050, 1140		
CuO	610, 500, 410	1050, 830, 790		
V_2O_5	1015, 860, 600	1035		
Cu/Cr/O	620, 520	1010, 950, 900		
Fe/Cr/O	560, 470	1005, 930		
SnO ₂	670, 610, 312	1060, 970		
ZnCr ₂ O ₄	670, 560	870, 980, 1010		
ZnO ⁻ ZnCr ₂ O ₄	670, 560	960, 1015		
ZnCr ₂ O ₄ K	670, 560	970		
TiO ₂ (anatase)	700-525, 347	950, 870, 770, 730		
Co ₃ O ₄	665, 560	800-1200		
Mo/Sn/O	990, 660	1005-1010		
V ₂ O ₅ /Al ₂ O ₃	1015, 890, 600	1020-1035		
SiO ₂	1100, 775	908, 888		
γ -Al ₂ O ₃	800, 620	1050		
ZnO	450	800-1200		
Śn/V/O	670, 610	980, 1035		
$\mathrm{Sb}_6\mathrm{O}_{13}$	740, 400	800-1200		

- surface M-O bonds of greater strength
- combination vibrations of fundamental absorption frequencies in this region!

Surface hydroxyl groups

The position and shape of the OH bands of surface hydroxyl groups is informative of their coordination

- Covalent oxide components usually give rise to very typical strong sharp peaks; in covalent oxide coordination of oxygen is mostly two and this also occurs at the surface where the OHs are, consequently, terminal
- On ionic oxides the coordination of oxygen is higher than two, so that bridging and triply bridging hydroxy groups are formed at the surface
- Relation between OH stretching frequency and structure and acidity is not straightforward:

OH band of MgO, amorphous silica and silica-alumina at $3745 \pm 3 \text{ cm}^{-1}$.

Silanol groups on amorphous silica (SBA-15)

Quantification of silanol groups in SBA-15

$$A_{10} = \varepsilon c \ l = \varepsilon c \ \frac{m}{A}$$
$$\varepsilon = 1.91 \pm 0.17 \cdot 10^5 \ cm^2 mol^{-1}$$

K. Heger, G. Marx, Mikrochim. Acta 133, (2000) 187.

A... area of the wafer

m...mass of wafer

Spectra normalized by the area weight of the wafer

SN	area weight mg cm ⁻²	area of Si-OH A. cm ⁻¹	OH conc. mol kg⁻¹ [mmol g⁻¹]	BET m² g⁻¹	OH density µmol m ⁻²
7204@550°C	6.57	31.7397	25.29	712	35.5
7206@900°C	9.52	15.1948	8.36	317	26.4

$$\begin{array}{cccc} OH & OH \\ | & + & | \\ Si & Si \end{array} \longrightarrow Si \end{array} \begin{array}{c} O \\ Si + H_2O \\ Si + H_2O \end{array}$$

Brønsted acid sites in crystalline alumosilicates

FTIRS of adsorbed bases

		Conjugated	Basic strength		Sensitive bands (base) Lewis acidity		Diagnostic band (acid) Brønsted acidity	
Base		acid	pK _a	PAª	Mode	Position ^b	Mode	Position ^b
Piperidine n-Butylamine	$C_5H_{10}NH$ n-C.H.—NH.	$C_5H_{10}NH_2^+$ n-C_HNH_1^+	11.1	933			$\delta \operatorname{NH}_2^+$ $\delta \operatorname{NH}_2^+$	$\sim 1650 \\ \sim 1540$
Ammonia Pvridine	NH ₃ C.H.N	NH ₄ ⁺ C ₂ H ₂ NH ⁺	9.2 5.2	846 912	$\delta_{sym} NH_3$ v8a	1300–1000 1632–1580	$\delta_{a_s}^{sym} NH_4^4$ v8a	$\sim 1440 \\ \sim 1640$
- ,	- 5 5- 1	- 3 - 3 - 1 - 1			v19b v1 (ring)	1455-1438 1020-990	v19b	~1540
Acetone Pyvalonitrile	$(CH_3)_2C=O$ t-C.HC=N	$(CH_3)_2C = OH^+$ t-C_H_2C = NH^+	$-7.2 \sim -10$	816	vC=O vC≡N	1730-1650 2310-2235		
Acetonitrile	$CH_3 - C \equiv N$	$CH_3 - C \equiv NH^+$	-10.4	783	$vC \equiv N$	{2340-2290 }2315-2250		
Nitric oxide Carbon monoxide	NO CO	[HNO]⁺ [HCO]⁺		598	$vN \equiv 0$ $vC \equiv 0$	2100–1875 2240–2150		

^a PA = proton affinity (kJ mol⁻¹). ^b Range (cm⁻¹). ^c Fermi resonance doublet.

G. Busca, PCCP 1 (1999) 723.

TPD of ammonia on Y-type zeolites (FAU)

CO₂ as probe for basic sites

Formation of bicarbonates by reaction of CO₂ with basic OH groups

J.C. Lavalley, Catal. Today 27 (1996) 377.

CO₂ TPD

Adsorption and temperature-programmed desorption of CO_2 on MgO-Al₂O₃ (Mg/Al=0.6)

CO as probe molecule

CO adsorption on silica

Classical approach: consider positions (shifts) of vibrational bands Small effect: frequency shifts $\approx 10\%$

CO adsorption on Lewis acid sites

H. Knözinger, Springer Series in Surface Sciences Vol. 33, Eds. E. Umbach, H.-J. Freund, Adsorption on Ordered Surface of Ionic Solids and Thin Films, Springer, Berlin, 1993, p. 257-267.

Correlation between frequency of adsorbed CO and coordination and charge of the metal cation site

"Modified electric field strength"

$$F_{m} = Z/N * R_{m}^{-2}$$

- Z: cation charge
- N: coordination number in cus state
- R_m: sum of effective ionic radius and van der Waals radius

Fig. 5. Correlation of carbonyl stretching frequency of adsorbed CO with modified electric field strength F (equ. (v)). ():5-coordinate ions; \bigcirc :3-coordinate ions; x:5-coordinate Mo^{X+}, supported; o:5-coordinate V, supported.

H. Knözinger, Proc. Int. Symp. Acid-Base Catalysis Sapporo 1988 Eds. K. Tanabe, H. Hattori, T. Yamaguchi, T. Tanaka

CO adsorption sites on metal particles

Adsorption of CO on Pd/Al₂O₃ at 77 K: adsorption of 1 mbar CO at 77 K (a), evacuation at LT (b-f), evac. at 106 K (g), 110 K (h), 124 K (i)

Further reading

- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Sixth Edition, Part A, John Wiley & Sons, Hoboken, New Jersey, 2009.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Sixth Edition, Part B, John Wiley & Sons, Hoboken, New Jersey, 2009.
- 3. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces, John Wiley & Sons, Chinchester, England, 2003.
- 4. H. Günzler, H.-U. Gremlich, IR Spektroskopie, Eine Einführung, Wiley-VCH, Weinheim, 2003.
- 5. J.W. Niemantsverdriet, Spectroscopy in Catalysis, An Introduction, Wiley-VCH, Weinheim, 2000.
- 6. G. Kortüm, "Reflectance Spectroscopy" / "Reflexionsspektroskopie" Springer 1969.

Acknowledgements

Many thanks to Friederike Jentoft and Jutta Kröhnert for figures and experimental data

Thank you for your attention