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Outline

•
 

Fundamentals of diffraction
–

 
What can we learn from a diffraction experiment?

•
 

X-ray diffraction
–

 
Powder techniques

–
 

Phase analysis
–

 
Refinement of XRD data

•

 

Line profile analysis
•

 

Rietveld

 

refinement

•
 

Neutron diffraction
–

 
Neutrons vs. X-ray



Fundamentals of diffraction
•

 
Transverse plane waves 
from different sources 
can “interfere”

 
when their 

paths overlap
•

 
constructive interference 
(in phase)

•
 

destructive interference 
(out of phase), completely 
destructive for the same 
amplitude and 
wavelength

•
 

partially destructive for 
different amplitudes and 
wavelengths



Diffraction experiments
•

 

Interference patterns can be 
produced at diffraction gratings 
(regularly spaced “slits”) for d ≈

 

λ
•

 

Waves from two adjacent 
elements (1) and (2) arrive at (3) 
in phase if their path difference is 
an integral number of wavelengths

•

 

Kinematic

 

theory of diffraction: 
–

 

R >> d: contributions of each 
beam can be taken as a plane 
traveling wave

–

 

Conservation of energy in the 
scattering process

–

 

A once-scattered beam does not 
re-scatter

•

 

Periodically arranged atoms 
(crystals) act as diffractions 
gratings for radiation 0.6 ≤

 

λ

 

≤

 

1.9 
Å

 

(M. von Laue, W. Friedrich, P. 
Knipping, 1912)



The Bragg equation
•

 

GE = EH = d sinθ
•

 

nλ

 

= 2d sinθ

 

(Sir W.L. Bragg)
–

 

2d < λ: no diffraction
–

 

2d > λ: different orders of 
diffractions (n= 1, 2, …) at 
different angles

–

 

2d >> λ: 1st order reflection 
too close to direct beam



Diffraction from planes of atoms
•

 

Interposition of the same types 
of atoms at d/4
–

 

n=1: path difference between 
planes A and B is λ, between 
A and a it is λ/4 Æ partially 
destructive interference

–

 

n=2: path difference between 
A and B is 2λ, between A and 
a it is λ/2 Æ complete 
destructive interference, 
“peak” eliminated

–

 

n=3: again partially destructive 
interference

–

 

n=4: all planes “in phase”
•

 

Different atoms at d/4 than in A 
and B 
–

 

no complete vanishing of 
intensity for n=2



Diffraction from a real crystal 
structure

•
 

Pioneering study of Sirs 
W.H. and W.L. Bragg, 
1913

•
 

NaCl
 

(cubic), 
measurement of 
amplitude of scattered X-

 ray from (100), (110) and 
(111) by tilting the crystal

•
 

The alternating amplitude 
in (c) indicates the 
alternation of Na and Cl

 layers in (111)



Scattered intensity and crystal 
structure

•
 
Total scattering power of a reflection

–
 

m: multiplicity, va

 

: volume of unit cell, V: illuminated 
volume of powder sample

•
 
The structure factor Fhkl

–
 

Ihkl

 

~ |Fhkl

 

|2
–

 
Fhkl

 

= Σ
 

fjT
 

exp
 

2πi(h⋅xj

 

+ k⋅yj

 

+ l⋅zj

 

)
–

 
fiT

 

: atomic
 

scattering
 

factor

 

V ⋅ λ3 ⋅ m ⋅ F2 1 + cos2 2θP = I0 ( )
4⋅va

2 2⋅sin θ
e4

me
2 c4

( )



Atomic scattering factor
•

 

X-ray photons interact with the electron 
clouds of an atom

•

 

electron clouds are not points in space, but 
possess a finite size of the same magnitude 
as the X-ray wavelength

•

 

electrons are spread in space and 
consequently not all are scattering in phase, 
the scattering amplitude will vary with 2θ

•

 

atomic scattering factor (ratio of the 
amplitude scattered by an atom to that 
scattered by a single electron) fall off with 
(sinθ)/λ

•

 

As a consequence, the Bragg peaks at 
higher angles will generally exhibit a lower 
intensity compared to those at lower angels



What can we learn from a 
diffraction experiment

•
 

Are there peaks? (Crystallinity) 
•

 
Which crystalline phases are present? (Phase 
identification, database of fingerprint patterns)

•
 

How many crystalline phases are present? 
(Homogeneity) 

•
 

Relative amount of phases? (Quantitative phase 
analysis)

•
 

Crystal structure refinement
•

 
Size, strain



X-ray diffraction

•
 

X-ray have 
wavelengths around 1 
Å (≈

 
d) (W.C. 

Röntgen, 1895)
•

 
Easily produced in X-

 ray tube



X-ray tubes



Geometry of diffractometers
•

 
Reflection 
geometry
–

 
θ-2θ

–
 

θ-θ

•
 

Transmission 
geometry



Powder XRD patterns
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Kα2 contribution
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Effect of wavelength
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Phase analysis
•

 

Peak positions and intensities are compared to a patterns from the 
powder diffraction file (PDF) database

•

 

Generally, ALL peaks found in a PDF pattern must also be seen in

 
in the diffractogram, otherwise it is not a valid match

•

 

Possible exceptions:
–

 

Small peaks may be not detectable if the noise level is too high
–

 

Missing peaks may be the result of a very strong preferred orientation 
effect (intensities systematically hkl-dependent)

–

 

“Missing”

 

peaks may be the result of anisotropic disorder (FWHMs

 
systematically hkl-dependent)

–

 

Very small residual peaks may be artifacts resulting from spectral 
impurities (other wavelengths, e.g. Kβ, W L)

–

 

The peaks are real, but they belong to the reference compound, not an 
impurity. It may be that your diffraction pattern is “better”

 

in terms of 
signal/noise ratio than the (possibly old) PDF pattern. After all, the 
diffractometers

 

have improved with time (Rietveld check required)
•

 

Systematic shifts of peak position might be due to thermal 
expansion (check PDF entry) or different composition

F.Girgsdies





Refinement of PXRD data

•
 

Refinement of powder XRD data can yield
–

 
crystal structure of the sample (model required)

–
 

quantitative phase analysis

Æ Rietveld method (H.M. Rietveld, 1967)

–
 

information on size and strain

Æ Line profile analysis



Line profile analysis

•

 

Fitting of a suitable profile function to the experimental data 
–

 

Gauss, Lorentz, Pseudo-Voigt, Pearson-VII
•

 

No structural model
•

 

Parameters for each reflection:
–

 

angular position (2θ)
–

 

maximal intensity Imax
–

 

integral intensity A
–

 

FWHM or integral breadth β

 

= A / Imax
–

 

profile paramter

 

(P7: m, pV: η) 
•

 

Patterns of high quality and with low overlap of peaks are required



Instrumental contribution
•

 

Line width dominated by beam 
divergence and flat-sample-

 
error (low 2θ), slits (medium 
2θ) and wavelength distribution 
in spectrum of XRD tube (high 
2θ)

•

 

Peaks of standard sample 
(large crystals, no strain, 
similar to sample, same 
measurement conditions) can 
be extrapolated by fitting a 
Cagliotti

 

function

FWHM2

 

= U tan2θ + V tanθ
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Sample line broadening
•

 
Size effect
–

 

incomplete destructive 
interference at θBragg

 

±Δθ

 

for 
a limited number of lattice 
planes

–

 

detectable for crystallites 
roughly < 100 nm

–

 

no 2θ

 

dependence

•
 

Strain effect
–

 

variation in d
–

 

introduced by defects, 
stacking fault, mistakes

–

 

depends on 2θ



Scherrer
 

equation
•

 
Determination of size effect, neglecting strain 
(Scherrer, 1918)

•
 

Thickness of a crystallite L = N dhkl
Lhkl

 

= k λ / (β
 

cosθ),
 

β
 

has to be corrected 
for instrumental 
contribution:
β2

 

= β2
obs

 

–
 

β2
standard

(for Gaussian profiles)
–

 
k: shape factor, typically taken as unity for β

 
and 0.9 

for FWHM
•

 
Drawbacks: strain not considered, physical 
interpretation of L, no information on size 
distribution



Pattern decomposition

•
 

βsize

 

, βstrain

 

and βinstr

 

contribute to βobs

•
 

Software correction for βinstr

 

from IRF
•

 
Reciprocal quantities for each reflection

–
 

β* = β
 

cos
 

θ
 

/ λ
–

 
|d*| = 1 / d = 2 sin

 
θ

 
/ λ



Wiliamson-Hall analysis
•

 
Indexed plot of β* vs

 
d*

–

 

Horizontal line: no strain, 
isotropic size effect

–

 

Horizontal lines for higher 
order reflections: no strain, 
anisotropic size effect

–

 

Straight line through the 
origin: isotropic strain

–

 

Straight line for higher 
order reflections but 
different slopes: anisotropic 
strain
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Example: ZnO

•
 

ZnO
 

obtained
 

by
 thermal decomposition

 of  Zn3

 

(OH)4

 

(NO3

 

)2

J. I. Langford, A. Boultif, J. P. Auffrédic, D. Louër, J. Appl. Crystallogr. 1993, 26, 22.



The Rietveld method
•

 
Whole-pattern-fitting-structure refinement

•
 

Least-squares refinement until the best fit is 
obtained of the entire powder pattern taken as 
the whole and the entire calculated pattern

•
 

Simultaneously refined models of crystal 
structure(s), diffraction optics effects, 
instrumental factors and other specimen 
characteristics

•
 

Feedback criteria during refinement
•

 
Pattern decomposition and structure refinement 
are not separated steps



Procedures in Rietveld refinement
•

 

Experimental data: numerical 
intensities yi

 

for each increment i in 2θ
•

 

Simultaneous least-squares fit to all 
(thousands) of yi

–

 

minimize Sy

 

=Σi

 

yi
-1 (yi

 

-yci

 

)2

•

 

Expression for yci

yci

 

= s Σhkl

 

Lhkl

 

|Fhkl

 

|2 Φ(2θi

 

-2θhkl

 

) Phkl

 

A + ybi

–

 

s: scale factor, Lhkl

 

contains Lorentz 
polarization and multiplicity factors, Φ: 
profile function, Phkl

 

preferred 
orientation function, A: absorption 
factor, Fhkl

 

: structure factor, ybi

 

: 
background intensity

•

 

As in all non-linear least-squares 
refinements, false (local) minima may 
occur

•

 

Good (near the global minimum) 
starting models are required 



Parameters in Rietveld refinement
•

 

For each phase
–

 

xj

 

yj

 

zj

 

Bj

 

Nj

 

(Position, isotropic thermal parameter and site occupancy of the jth

 
atom in the unit cell

–

 

Scale factor
–

 

Profile breadth parameters (2θ

 

dependence of FWHM, typically Cagliotti

 

function 
FWHM2

 

= U tan2θ + V tanθ

 

+ W)
–

 

Lattice parameters
–

 

Overall temperature factor
–

 

individual anisotropic temperature factors
–

 

Preferred orientation
–

 

Extinction
•

 

Global parameters
–

 

2θ-Zero
–

 

Instrumental profile (+ asymmetry)
–

 

Background (several parameters in analytical function)
–

 

Wavelength
–

 

Specimen displacement, transparancy
•

 

Altogether some 10-100 parameters: Keep an eye on the refined 
parameters-to-reflections (independent observations) ratio to avoid over-

 
fitting



Criteria of fit

•
 

R-Bragg

–

 

insensitive to misfits not involving the 
Bragg intensities of the phase(s) being 
modelled

•
 

R weighted pattern
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Neutrons

•
 

According to the wave-particle dualism (λ
 

= 
h/mv, de Broglie) neutrons have wave properties

•
 

As X-rays neutrons have a wavelength on the 
order of the atomic scale (Å) and a similar 
interaction strength with matter (penetration 
depth from µm to many cm)

•
 

Neutrons generate interference patterns and can 
be used for Bragg diffraction experiments

•
 

Same scattering theory for neutrons and X-rays



Generation of neutrons

•
 

Neutron must be released from the atomic 
nuclei, two possibilities:
–

 
Fission reactor

•
 

235U nuclei break into lighter elements and liberate 
2 to 3 neutrons for every fissioned

 
element

–
 

Spallation
 

source
•

 
proton bombardment of lead nuclei, releasing 
spallation

 
neutrons

www.hmi.de



Research reactor at Helmholtz 
Zentrum

 
Berlin

www.hmi.de



Research reactor at Helmholtz 
Zentrum

 
Berlin

www.hmi.de



Properties of neutrons
•

 
Fission process: 1 MeV

 
–

 
too high for practical use

•
 

Neutrons are slowed down (moderated in water or 
carbon)
–

 
hot neutrons: 

•

 

moderated at 2000°C
•

 

0.1-0.5 eV, 0.3-1 Å, 10 000 m/s

–
 

thermal neutrons: 
•

 

moderated at 40°C
•

 

0.01-0.1 eV, 1-4 Å, 2000 m/s

–
 

cold neutrons: 
•

 

moderated at -250°C
•

 

0-0.01 eV, 0-30 Å, 200 m/s



Neutrons vs. X-rays
•

 

Particle wave
•

 

Mass, Spin 1/2, Magnetic 
dipole moment

•

 

Neutrons interact with the 
nucleus

•

 

Scattering power independent 
of 2θ

•

 

Electromagnetic wave
•

 

No mass, spin 1, no magnetic 
dipole moment

•

 

X-ray photons interact with the 
electrons

•

 

Scattering power falls off with 
2θ



Scattering lengths



Neutron vs. XRD pattern
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Neutrons vs. X-rays
•

 

Lower absorption
•

 

Large amounts of sample 
needed

•

 

Neighbors and isotopes can be 
discriminated

•

 

Light elements can be seen
•

 

Low availability (nuclear 
reactor)

•

 

Magnetic structures can be 
investigated

•

 

Incoherent scatterers

 

(eg. H) 
have to be avoided

•

 

Stronger absorption
•

 

Lower amounts of sample 
needed

•

 

Neighbors and isotopes cannot 
be discriminated

•

 

Light elements hard to detect
•

 

High availability (lab 
instrument)



Application in catalysis
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Summary

•
 

Powder XRD can give information on crystalline 
phases (fingerprint), crystal structure and 
quantitative phase analysis (e.g. from Rietveld 
refinement) and size/strain effects (from line 
profile analysis)

•
 

Neutron diffraction is a non-routine 
complementary technique allowing detection of 
light elements, recording of higher intensity 
Bragg reflections at high angle, discrimination of 
neighbouring elements 
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