

Powder X-ray and neutron diffraction

Lecture series: Modern Methods in Heterogeneous Catalysis Research

Malte Behrens, FHI-AC behrens@fhi-berlin.mpg.de

Outline

- Fundamentals of diffraction
 - What can we learn from a diffraction experiment?
- X-ray diffraction
 - Powder techniques
 - Phase analysis
 - Refinement of XRD data
 - Line profile analysis
 - Rietveld refinement
- Neutron diffraction
 - Neutrons vs. X-ray

Fundamentals of diffraction

- Transverse plane waves from different sources can "interfere" when their paths overlap
- constructive interference (in phase)
- destructive interference (out of phase), completely destructive for the same amplitude and wavelength
- partially destructive for different amplitudes and wavelengths

FIG. 3-2. Interference between two waves. Both waves are assumed to have the same maximum amplitude (unity) except in (c) and the same wavelength in all cases. (a) Constructive interference; (b) complete destructive interference; (c) partial destructive interference.

Diffraction experiments

- Interference patterns can be produced at diffraction gratings (regularly spaced "slits") for d ≈ λ
- Waves from two adjacent elements (1) and (2) arrive at (3) in phase if their path difference is an integral number of wavelengths
- Kinematic theory of diffraction:
 - R >> d: contributions of each beam can be taken as a plane traveling wave
 - Conservation of energy in the scattering process
 - A once-scattered beam does not re-scatter
- Periodically arranged atoms (crystals) act as diffractions gratings for radiation 0.6 ≤ λ ≤ 1.§ A (M. von Laue, W. Friedrich, P. Knipping, 1912)

The Bragg equation

- GE = EH = d sin θ
- $n\lambda = 2d \sin\theta$ (Sir W.L. Bragg)
 - 2d < λ : no diffraction
 - 2d > λ: different orders of diffractions (n= 1, 2, ...) at different angles
 - 2d >> λ : 1st order reflection too close to direct beam

FIG. 3-5. Amplitude versus $2 \sin \theta / \lambda$.

Fig. 3-1. Reinforced scattering by a regularly spaced row of atoms.

Diffraction from planes of atoms

- Interposition of the same types of atoms at d/4
 - n=1: path difference between planes A and B is λ, between A and a it is λ/4 → partially destructive interference
 - n=2: path difference between A and B is 2λ, between A and a it is λ/2 → complete destructive interference, "peak" eliminated
 - n=3: again partially destructive interference
 - n=4: all planes "in phase"
- Different atoms at d/4 than in A and B
 - no complete vanishing of intensity for n=2

Diffraction from a real crystal structure

- Pioneering study of Sirs W.H. and W.L. Bragg, 1913
- NaCl (cubic), measurement of amplitude of scattered Xray from (100), (110) and (111) by tilting the crystal
- The alternating amplitude in (c) indicates the alternation of Na and Cl layers in (111)

FIG. 3-9. Diffract on from different faces of an NaCl crystal. [After Bragg, W. H., Proc. Roy. Soc., London A89 246 (1913).]

(c) NaCl: $F \frac{4}{m} \frac{3}{2} \frac{2}{m}$ a = 5.64 Å $r_{\text{Na}^+} = 0.97 \text{ Å}$ $r_{\text{Cl}^-} = 1.81 \text{ Å}$ 4 "molecules"/cell

Scattered intensity and crystal structure

Total scattering power of a reflection

$$P = I_0 \frac{V \cdot \lambda^3 \cdot m \cdot F^2}{4 \cdot v_a^2} \left(\frac{1 + \cos^2 2\theta}{2 \cdot \sin \theta}\right) \left(\frac{e^4}{m_e^2 c^4}\right)$$

- m: multiplicity, v_a: volume of unit cell, V: illuminated volume of powder sample
- The structure factor F_{hkl}
 - $|\mathsf{I}_{\mathsf{hkl}} \sim |\mathsf{F}_{\mathsf{hkl}}|^2$
 - $F_{hkl} = \Sigma f_{jT} \exp 2\pi i (h \cdot x_j + k \cdot y_j + l \cdot z_j)$
 - f_{iT}: atomic scattering factor

Atomic scattering factor

- X-ray photons interact with the electron clouds of an atom
- electron clouds are not points in space, but possess a finite size of the same magnitude as the X-ray wavelength
- electrons are spread in space and consequently not all are scattering in phase, the scattering amplitude will vary with 2θ
- atomic scattering factor (ratio of the amplitude scattered by an atom to that scattered by a single electron) fall off with $(\sin\theta)/\lambda$
- As a consequence, the Bragg peaks at higher angles will generally exhibit a lower intensity compared to those at lower angels

Fig. 3-14. Phase difference in scattering from different parts of an atom.

What can we learn from a diffraction experiment

- Are there peaks? (Crystallinity)
- Which crystalline phases are present? (Phase identification, database of fingerprint patterns)
- How many crystalline phases are present? (Homogeneity)
- Relative amount of phases? (Quantitative phase analysis)
- Crystal structure refinement
- Size, strain

X-ray diffraction

- X-ray have wavelengths around 1
 Å (≈ d) (W.C. Röntgen, 1895)
- Easily produced in Xray tube

M shell

L shell

shell

La

Kα

nucleus

FIG. 4-6. The white and characteristic spectrum from an x-ray tube. The K_{α_1} transition has a higher energy than K_{α_2} and therefore a smaller wavelength. Hence the K_{α_1} peak occurs at a smaller 2θ since Bragg's law requires $\lambda = 2d \sin \theta$.

Geometry of diffractometers

- Reflection
 geometry
 - $\theta 2\theta$
 - θ-θ

 Transmission geometry

Powder XRD patterns

NaCl, Cu K α

Intensity (a.u.)

$K\alpha 2$ contribution

NaCl, Cu K α 1 + α 2, no monochromator

Intensity (a.u.)

2 Theta (deg.)

Effect of wavelength

X-ray Powder Diffraction in Catalysis

"Anatomy" of the XRD pattern

Information content of an idealized diffraction pattern

Frank Girgsdies, Preparation Group, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany

Phase analysis

- Peak positions and intensities are compared to a patterns from the powder diffraction file (PDF) database
- Generally, ALL peaks found in a PDF pattern must also be seen in in the diffractogram, otherwise it is not a valid match
- Possible exceptions:
 - Small peaks may be not detectable if the noise level is too high
 - Missing peaks may be the result of a very strong preferred orientation effect (intensities systematically hkl-dependent)
 - "Missing" peaks may be the result of anisotropic disorder (FWHMs systematically hkl-dependent)
 - Very small residual peaks may be artifacts resulting from spectral impurities (other wavelengths, e.g. K β , W L)
 - The peaks are real, but they belong to the reference compound, not an impurity. It may be that your diffraction pattern is "better" in terms of signal/noise ratio than the (possibly old) PDF pattern. After all, the diffractometers have improved with time (Rietveld check required)
- Systematic shifts of peak position might be due to thermal expansion (check PDF entry) or different composition

F.Girgsdies

X-ray Powder Diffraction in Catalysis

Possibilities of XRD analysis: qualitative analysis

		He F Ne	
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn G Rb Sr Y ZI Nb Mo Tc Ru Rh Pd Ag Cd I	a Ge As Se B n Sn Sb Te	r Kr Xe	
Cs Ba La HI Ta W Re Os Ir Pl Au Hg T Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd To Dy	11 Pb Bi Po 4	t Ro	
Th Pa U Np Pu Am Cm Bk Cf	Es Fm Md No		
All req. Any req. Must not Optional Toggle	Cance		
Devel			
<u>R</u> eset			
Reset	<u> K</u>		
Reset 26 free [1//1464] (m) 1 (m) 1	<u>[K</u>		
Reset	<u>K</u>		
Process 197-1929[PDF-1 Detts 1-47 Own21059; * Www.clonythi 1.990099 197-1929[PDF-2 Detts 1-47 Own21059; * Www.clonythi 1.990099 Tirconsidas Outlde Bandielegrica, syn ricking scronnige Stringen Stringen Stringen Bandielegrica, syn ricking Stringen Stringen Stringen Stringen Bandielegrica, syn ricking Cutoff: 17.7 Stringen Stringen Stringen Differ, 12.4 Cutoff: 17.7 Stringen Stringen Stringen Stringen Cr. / Towice Differention, 1. (1996) Lint Stringen Stringen Stringen Stringen	<u></u>		
Artan 107-1641 (************************************	<u>¥</u>		
Procession Procession 100-11001 PDF-1001 DDF Datase 107-1201 PDF-1001 DDF Datase 107-1110000000 PDF-101 DDF Datase <	<u></u>		
Product State <	<u></u>		

29/71

Frank Girgsdies, Preparation Group, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany

Refinement of PXRD data

- Refinement of powder XRD data can yield
 - crystal structure of the sample (model required)
 - quantitative phase analysis
 - \rightarrow Rietveld method (H.M. Rietveld, 1967)
 - information on size and strain
 - \rightarrow Line profile analysis

Line profile analysis

- Fitting of a suitable profile function to the experimental data
 - Gauss, Lorentz, Pseudo-Voigt, Pearson-VII
- No structural model
- Parameters for each reflection:
 - angular position (2 θ)
 - maximal intensity I_{max}
 - integral intensity A
 - FWHM or integral breadth β = A / I_{max}
 - profile paramter (P7: m, pV: η)
- Patterns of high quality and with low overlap of peaks are required

Instrumental contribution

- Line width dominated by beam divergence and flat-sample-error (low 20), slits (medium 20) and wavelength distribution in spectrum of XRD tube (high 20)
- Peaks of standard sample (large crystals, no strain, similar to sample, same measurement conditions) can be extrapolated by fitting a Cagliotti function

$$FWHM^2 = U \tan^2\theta + V \tan\theta + W$$

Instrumental resolution function

Sample line broadening

- Size effect
 - incomplete destructive interference at $\theta_{Bragg} \pm \Delta \theta$ for a limited number of lattice planes
 - detectable for crystallites roughly < 100 nm
 - no 2θ dependence

Abb. 16: 111- und 200-Reflex von Kupferproben mit unterschiedlicher Teilchengröße

- Strain effect
 - variation in d
 - introduced by defects, stacking fault, mistakes
 - depends on 2θ

Scherrer equation

- Determination of size effect, neglecting strain (Scherrer, 1918)
- Thickness of a crystallite L = N d_{hkl} L_{hkl} = k λ / (β cos θ), β has to be

β has to be corrected for instrumental contribution:

$$\beta^2 = \beta^2_{obs} - \beta^2_{standard}$$

(for Gaussian profiles)

- k: shape factor, typically taken as unity for β and 0.9 for FWHM
- Drawbacks: strain not considered, physical interpretation of L, no information on size distribution

Pattern decomposition

- β_{size} , β_{strain} and β_{instr} contribute to β_{obs}
- Software correction for β_{instr} from IRF
- Reciprocal quantities for each reflection

$$- \beta^* = \beta \cos \theta / \lambda$$
$$- |d^*| = 1 / d = 2 \sin \theta / \lambda$$

Wiliamson-Hall analysis

- Indexed plot of β* vs d*
 - Horizontal line: no strain, isotropic size effect
 - Horizontal lines for higher order reflections: no strain, anisotropic size effect
 - Straight line through the origin: isotropic strain
 - Straight line for higher order reflections but different slopes: anisotropic strain

Example: ZnO

 ZnO obtained by thermal decomposition of Zn₃(OH)₄(NO₃)₂

Fig. 28.7. Williamson-Hall plot for strain-free ex-hydroxide-nitrate ZnO.

Fig. 28.8. Section through the 'average' cylinder (τ_{cal}) used to model the form of the crystallites of the ex-hydroxide-nitrate ZnO sample. \longrightarrow : observed apparent size ε_{obs} , $---\rightarrow$: actual observed size τ_{obs} in the direction *hkl*, the dotted curve is the loci of the calculated apparent sizes (from Langford *et al.*, 1993).

Fig. 28.9. TEM micrograph of ex-hydroxide-nitrate ZnO showing hexagonal crystallites (bar = 200 Å).

J. I. Langford, A. Boultif, J. P. Auffrédic, D. Louër, J. Appl. Crystallogr. 1993, 26, 22.

The Rietveld method

- Whole-pattern-fitting-structure refinement
- Least-squares refinement until the best fit is obtained of the entire powder pattern taken as the whole and the entire calculated pattern
- Simultaneously refined models of crystal structure(s), diffraction optics effects, instrumental factors and other specimen characteristics
- Feedback criteria during refinement
- Pattern decomposition and structure refinement are not separated steps

Procedures in Rietveld refinement

- Experimental data: numerical intensities y_i for each increment i in 2θ
- Simultaneous least-squares fit to all (thousands) of y_i
 - minimize $S_v = \Sigma_i y_i^{-1} (y_i y_{ci})^2$
- Expression for y_{ci}

$$y_{ci} = s \Sigma_{hkl} L_{hkl} |F_{hkl}|^2 \Phi(2\theta_i - 2\theta_{hkl}) P_{hkl} A + y_{bi}$$

- s: scale factor, L_{hkl} contains Lorentz polarization and multiplicity factors, Φ : profile function, P_{hkl} preferred orientation function, A: absorption factor, F_{hkl} : structure factor, y_{bi} : background intensity
- As in all non-linear least-squares refinements, false (local) minima may occur
- Good (near the global minimum) starting models are required

Fig. 1.1 Example of a Rietveld refinement plot. The specimen was fluorapatite. The observed intensity data, y_i , are plotted in the upper field as points with vertical error bars representing the counting statistical e.s.d.'s in them. The calculated pattern is shown in the same field as a solid-line curve. The difference, observed minus calculated, is shown in the lower field. The short vertical bars in the middle field indicate the positions of possible Bragg reflections.

Parameters in Rietveld refinement

- For each phase
 - $x_j y_j z_j B_j N_j$ (Position, isotropic thermal parameter and site occupancy of the jth atom in the unit cell
 - Scale factor
 - Profile breadth parameters (2 θ dependence of FWHM, typically Cagliotti function FWHM² = U tan² θ + V tan θ + W)
 - Lattice parameters
 - Overall temperature factor
 - individual anisotropic temperature factors
 - Preferred orientation
 - Extinction
- Global parameters
 - 20-Zero
 - Instrumental profile (+ asymmetry)
 - Background (several parameters in analytical function)
 - Wavelength
 - Specimen displacement, transparancy
- Altogether some 10-100 parameters: Keep an eye on the refined parameters-to-reflections (independent observations) ratio to avoid overfitting

Criteria of fit

R-Bragg

• R weighted pattern

$$R_{B} = \frac{\sum |I_{K}("obs") - I_{K}(calc)|}{\sum I_{K}("obs")}$$

 insensitive to misfits not involving the Bragg intensities of the phase(s) being modelled

$$R_{wp} = \left(\frac{\Sigma w_i (y_i(obs) - y_i(calc))^2}{\Sigma w_i (y_i(obs))^2}\right)^{\frac{1}{2}}$$

Neutrons

- According to the wave-particle dualism (λ = h/mv, de Broglie) neutrons have wave properties
- As X-rays neutrons have a wavelength on the order of the atomic scale (Å) and a similar interaction strength with matter (penetration depth from µm to many cm)
- Neutrons generate interference patterns and can be used for Bragg diffraction experiments
- Same scattering theory for neutrons and X-rays

Generation of neutrons

- Neutron must be released from the atomic nuclei, two possibilities:
 - Fission reactor
 - ²³⁵U nuclei break into lighter elements and liberate
 2 to 3 neutrons for every fissioned element

- Spallation source
 - proton bombardment of lead nuclei, releasing spallation neutrons

Research reactor at Helmholtz Zentrum Berlin

Research reactor at Helmholtz Zentrum Berlin

Properties of neutrons

- Fission process: 1 MeV too high for practical use
- Neutrons are slowed down (moderated in water or carbon)
 - hot neutrons:
 - moderated at 2000°C
 - 0.1-0.5 eV, 0.3-1 Å, 10 000 m/s
 - thermal neutrons:
 - moderated at 40°C
 - 0.01-0.1 eV, 1-4 Å, 2000 m/s
 - cold neutrons:
 - moderated at -250°C
 - 0-0.01 eV, 0-30 Å, 200 m/s

Fig. 2.16. Spectral distribution of moderated neutrons from a nuclear reactor. A narrow band of wavelengths can be selected for diffraction experiments.

Neutrons vs. X-rays

- Particle wave
- Mass, Spin 1/2, Magnetic dipole moment
- Neutrons interact with the nucleus
- Scattering power independent of 2θ

- Electromagnetic wave
- No mass, spin 1, no magnetic dipole moment
- X-ray photons interact with the electrons
- Scattering power falls off with 20

Scattering lengths

Fig. 1.3 Nuclear scattering lengths for thermal neutrons shown as a function of atomic weight. (Courtesy of Prof. H. Fuess.)

Neutron vs. XRD pattern

2 Theta (deg.)

Neutrons vs. X-rays

- Lower absorption
- Large amounts of sample needed
- Neighbors and isotopes can be discriminated
- Light elements can be seen
- Low availability (nuclear reactor)
- Magnetic structures can be investigated
- Incoherent scatterers (eg. H) have to be avoided

- Stronger absorption
- Lower amounts of sample needed
- Neighbors and isotopes cannot be discriminated
- Light elements hard to detect
- High availability (lab instrument)

FIG. 4-27. Schematic neutron diffraction patterns from polycrystalline (a) bcc ferromagnet and (b) bcc antiferromagnet. The shaded area represents the contribution of the magnetic scattering which decreases with θ due to the decrease in magnetic scattering factor f_{mag} .

Application in catalysis

Summary

- Powder XRD can give information on crystalline phases (fingerprint), crystal structure and quantitative phase analysis (e.g. from Rietveld refinement) and size/strain effects (from line profile analysis)
- Neutron diffraction is a non-routine complementary technique allowing detection of light elements, recording of higher intensity Bragg reflections at high angle, discrimination of neighbouring elements

Literature / References

- L.H. Schwartz, J.B. Cohen "Diffraction from Materials" Academic Press, New York 1977.
- H.P. Klug, L.E. Alexander "X-Ray Diffraction Procedures" 2nd Edition, John Wiley, New York 1974.
- R.A. Yound (ed) "The Rietveld Method" IUCr, Oxford Science Publications, Oxford University Press 1993.
- S.E. Dann "Reaction and Characterization of Solids" RSC, Cambridge 2000.
- Educational material for the "Praktikum für Fortgeschrittene", Institute of Inorganic Chemistry of the University Kiel.
- Helmhotz-Zentrum für Materialien und Energie: www.hmi.de.
- Handout "Weiterbildung Chemische Nanotechnologie", Universität des Saarlands, Saarbrücken.
- Handout "Application of Neutrons and Synchroton Radiation in Engineering Material Science", Virtual Institute Photon and Neutrons for Advanced Materials (PNAM).
- J. I. Langford, A. Boultif, J. P. Auffrédic, D. Louër, J. Appl. Crystallogr. 1993, 26, 22.
- F. Girgsdies: Lecture Series Modern Methods in Heterogeneous Catalysis: "X-Ray Diffraction in Catalysis" 2006.