

Modern Methods in Heterogeneous Catalysis Research

Surface crystallography

Dirk Rosenthal Department of Inorganic Chemistry Fritz-Haber-Institut der MPG Faradayweg 4-6, DE 14195 Berlin

Part of the lecture is taken from Wolfgang Rankes LEED-Script

Literature:

G. <u>Ertl</u>, J. <u>Küppers</u>, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
M. <u>Henzler</u>, W. <u>Göpel</u>, Oberflächenphysik des Festkörpers, Teubner, Stuttgart (1991).
M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Experiment, Theory and Surface Structure Determination, Springer Series in Surface Sciences 6, G. Ertl, R. Gomer eds., Springer, Berlin (1986).
M. Horn-von Hoegen, Zeitschrift für Kristallographie 214 (1999) 1-75.

Content

- 1. Bravais lattices
- 2. Structure examples: Overlayers
- 3. Method: LEED, low energy electron diffraction
- 4. LEED principle in one and two dimensions
- 5. Reciprocal lattice
- 6. Ewald sphere construction
- 7. LEED and symmetry: glide lines
- 8. Astonishing example
- 9. LEED and defects
- 10. Comparison with other methods
- 11. LEED I-V measurement
- 12. Reality an example from heterogeneous catalysis

Bravais lattices

INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY

or

International Tables for X-Ray Crystallography, N. F. M. Henry and K. Lonsdale, Eds. (The Kynoch Press, Birmingham, 1969) ,chap. 1.

Bravais lattices

Table 9.1.7.1. Two-dimensional Bravais lattices

	Lattice parameters			Metric tensor		
Bravais lattice*	Conventional	Primitive	Conventional	Primitive/transf.†	Relations of the components	Projections
mp	a, b γ	a, b γ	811 812 822	g11 g12 g22		808
op	a, b	a, b $\gamma = 90^{\circ}$	g ₁₁ 0	g ₁₁ 0 822		
oc	$\gamma = 90^{\circ}$	$a_1 = a_2$ γ	822	$\begin{array}{c c} & T(C) \\ g'_{11} & g'_{12} \\ & g'_{11} \end{array}$	$ \begin{array}{l} g_{11}' = \frac{1}{4}(g_{11} + g_{22}) \\ g_{12}' = \frac{1}{4}(g_{11} - g_{22}) \\ g_{11} = 2(g_{11}' + g_{12}') \\ g_{22} = 2(g_{11}' - g_{12}') \end{array} $	
tp	$a_1 = a_2$ $\gamma = 90^{\circ}$	$a_1 = a_2$ $\gamma = 90^{\circ}$	g ₁₁ 0 g ₁₁	g ₁₁ 0 g ₁₁		
hp	$a_1 = a_2$ $\gamma = 120^{\circ}$	$a_1 = a_2$ $\gamma = 120^{\circ}$	$\begin{array}{c} g_{11} & -\frac{1}{2} g_{11} \\ g_{11} \\ g_{11} \end{array}$			

* The symbols for Bravais lattices were adopted by the International Union of Crystallography in 1985; cf. de Wolff et al. (1985). $\dagger T(C) = \frac{1}{2}(11/\overline{11}).$

Structure examples: Overlayers

Three possible arrangements yielding c(2x2) structures. Note: different symmetry but the same LEED pattern!

Method: LEED, low energy electron diffraction

Necessary: Surface science, UHV, p~10⁻¹⁰ mbar

LEED is surface sensitive

STM

Advantage:

• can look into the unit cell

Disadvantage: • only local (statistics)

LEED principle in one dimension

Useful: Introduction of **reciprocal lattice**

Ewald sphere construction

- plot reciprocal lattice (rods)
- plot direction of incident beam (s₀) towards origin of the reciprocal space (0,0)
- go from (0,0) $1/\lambda$ along this direction
- make circle (sphere) with radius $1/\lambda$
- direction from circle (sphere) center towards cut with reciprocal lattice rods gives direction of all possible diffraction spots (hk) (here k=0)

Usual arrangement:

Normal incidence, yields a symmetrical diffraction pattern

LEED principle in two dimensions

LEED and symmetry

Table 2.2.13.3. Reflection conditions for the plane groups

Type of reflections	Reflection condition	Centring type of plane cell; or glide line with glide vector	Coordinate system to which condition applies	
hk	None	Primitive p	All systems	
:	h+k=2n	Centred c	Rectangular	
	h-k=3n	Hexagonally centred h^*	Hexagonal	
h0	h=2n	Glide line g normal to b axis; glide vector $\frac{1}{2}$ a	Rectangular, Square	
0k	k=2n	Glide line g normal to a axis; glide vector $\frac{1}{2}\mathbf{b}$		

* For the use of the unconventional h cell see Chapter 1.2.

Glide line symmetry and LEED

Real space

Reciprocal space

LEED pattern

Ewald sphere construction and beam energy

Increasing the beam energy means increasing $1/\lambda$, i.e. a larger Ewald sphere

Experiment

- 10 nm TiO₂ deposited on Re(10-10) (known from XPS)
- Surface crystallography? LEED!

Ewald sphere construction with facets

Result of the experiment

Rutile(011)-(2x1) crystallites with facets according to the Wulff-construktion

Glide line symmetry

LEED and defects

Information from spot shape (profile), background, E_0 -dependence (k₁-dependence)

Nachweis von Oberflächendefekten mit Beugung							
Dimen - sion	Beispiele An	Einfluß auf Reflexprofil					
0	Punktfehler thermische Bewegung statische Unordnung	Anordnung: statistisch			K <u>t</u> Abhängigkeit keine		
		korreliert		\checkmark			
1	Stufenkanten Domänen (Größe, Grenzen)	statistisch regelmäßig	oder	<u>~</u>	periodisch (Stufen) keine (Domänen)		
2	Überstruktur			A A	keine		
	Facetten			11	periodisch		
3	Volumendefekte (Mosaik, Verspannung)		IN	1	monoton		
ideale Oberflächen			LA	Λ	keine		

Henzler, Göpel Abb. 3.8.10, p.176

Special method: SPA-LEED (spot profile analysis), complementary to STM

Comparison with other methods

Surface diffraction with X-rays, He-atoms and electrons. Example: diamond-type (111) surface like C, Si, Ge. The darkness of rec. latt. spots and rods symbolizes diffraction intensity

Horn-von Hoegen, fig. 2.1

LEED – intensities

Spot intensities contain information on structure within the unit cell

 $I \sim |F|^2 \cdot |G|^2$

$|G|^2$ = lattice factor

contains shape and arrangement of repeat units (unit cells) yields reciprocal lattice determines location and shape of spots, kinematic theory

 $|F|^2$ = structure factor or scattering factor

contains contribution from all atoms within the repeat unit, includes multiple scattering, in-depth attenuation, dynamic theory

Multiple scattering Henzler/Göpel fig. 3.7.3, p.151

LEED I-V measurement

Dynamic LEED analysis: No direct deduction of structure from I-V-curves:

Guess structure model calculate I-V-curves compare with measured curves modify model check if improval if yes: proceed modifying in this direction if no: modify in another direction or guess new model

Disadvantage: Only for ordered structures Much computer time

But:

One of very few methods for structure analysis of first few atomic layers (~1 nm)

Fe{oct2}

LEED in model catalysis - example

Distinguish different Fe-O-phases

as measured

contrast enhanced

FeO(111)/Pt(111), 1 ML

Fe₃O₄(111)

α-Fe₂O₃(0001)

Change of order and phase during reaction

Starting surface: α -Fe₂O₃(0001) (hematite), defective

After reaction - no long-range order

- strong C peak in AES

After mild TPO (thermal programmed oxidation)

- reordered
- no longer hematite but $Fe_3O_4(111)$ (magnetite

Osama Shekhah