

Spin und magnetisches Moment von Elektronen und Kernen

Information accessible by EPR

Iocal structure of transition metal ions with unpaired electrons:

d ¹	d²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹
V ⁴⁺ Mo ⁵⁺ Cr ⁵⁺ Ti ³⁺ Zr ³⁺	V ³⁺ Mo ⁴⁺	Mn ⁴⁺ Mo ³⁺ Cr ³⁺	Mn ³⁺ Cr ²⁺	Mn ²⁺ Fe ³⁺ Ru ³⁺ Os ³⁺ Ir ⁴⁺	Fe ²⁺ Ru ²⁺ Os ²⁺ Co ³⁺	Ni ³⁺ Rh ²⁺ Pd ³⁺ Co ²⁺	Ni ²⁺ Rh ⁺ Pt ²⁺ Pd ²⁺ Co ⁺	Ni ⁺ Rh ⁰ Pt ⁺ Pd ⁺ Ag ²⁺ Au ²⁺ Cu ²⁺

Information accessible by EPR

Iocal structure of transition metal ions with unpaired electrons:

d ¹		d ³		d ⁵	d ⁷	d ⁹
V ⁴⁺ Mo ⁵⁺ Cr ⁵⁺ Ti ³⁺ Zr ³⁺		Mn ⁴⁺ Mo ³⁺ Cr ³⁺		Mn ²⁺ Fe ³⁺ Ru ³⁺ Os ³⁺ Ir ⁴⁺	Ni ³⁺ Rh ²⁺ Pd ³⁺ Co ²⁺	Ni ⁺ Rh ⁰ Pt ⁺ Pd ⁺ Aq ²⁺
	visible at elevated T					Au ²⁺ Cu ²⁺

• nature of radicals (• C_xH_y , • O_2^- , • O^- , •OH, •OOH)

- conduction electrons of small metal particles
- size and shape of ferro- or ferrimagnetic resonance of metal particles (e. g. Ni⁰) or metal oxide particles (e. g. Fe₃O₄)

Energie von Elektronen im äußeren Magnetfeld

Elektron in einem Atom

$$H = \beta \vec{B} \cdot (\vec{L} + g_e \vec{S}) + \lambda \vec{L} \cdot \vec{S} = \beta \vec{B} \cdot g \cdot \vec{S}$$

Pulver-ESR-Spektrum

Summe über alle möglichen Orientierungen der magnetischen Achsen von VO²⁺ gegenüber \overrightarrow{B}

Kopplung von Elektronen- und Kernspin

$$S = \frac{1}{2}, I = \frac{1}{2}$$

Beispiel: H-Atom $a_{iso} = 50,68 \text{ mT}$

Anzahl der Hyperfeinlinien: $(2I_1 + 1) (2I_2 + 1) \dots (2I_n + 1)$

Bei Kopplung mit n äquivalenten Kernen:

(2nl + 1)

$$\boldsymbol{A}_{iso} = \frac{2\mu_0}{3} \boldsymbol{g} \beta_{e} \boldsymbol{g}_{n} \beta_{n} |\psi(0)|^2$$

Kopplung von \overrightarrow{S} und \overrightarrow{I} für V: I = 7/2

Aufspaltung jedes Elektronenniveaus in (2I + 1) = 8 Hyperfeinniveaus

$$E_{dipolar} = -\frac{\mu_0}{4\pi} \frac{3\cos^2\theta - 1}{r^3} \mu_{nz} \mu_{ez}$$

Pulver-ESR-Spektrum von VO²⁺

Abhängigkeit des V⁴⁺-ESR-Spektrums von der Koordinationsgeometrie (oktaedrisch, VO²⁺)

Abhängigkeit des V⁴⁺-ESR-Spektrums von der Koordinationsgeometrie (tetraedrisch)

$\Delta E \approx h/2\pi\tau$ + kurze Relaxationszeiten, große Linienbreiten

EPR von V³⁺ (d²)

Intensität von EPR-Signalen

$$\vec{M} \approx N_{v}\vec{\mu} \qquad I \sim \chi_{m} = \frac{M \cdot \mu_{m}}{B} \qquad M = \frac{N_{v}\mu^{2}B}{3kT} \text{ (therm.Gleichgewicht)}$$
$$\vec{I} \sim \chi_{m} = \frac{N_{v}g^{2}\beta^{2}S(S+1)\mu_{m}}{3k} \cdot \frac{1}{T}$$
$$\vec{\chi_{m}} = \frac{C}{T}$$
$$Curie \qquad Curie - Weiß \qquad 0$$

Magnetische Wechselwirkung von VO²⁺ in (VO)₂P₂O₇

Measure of exchange efficiency:

- ΔE exchange energy
- J exchange integral (when crystal structure is known)

$$J = \frac{\Delta E}{2zS_i(S_i+1)}$$

EPR – apparative Details

Z^

Rechteck-Hohlraumresonator

Einfluss der Mikrowellenfrequenz

Band	v / GHz	B _R /mT	λ / cm
L	1,5	54	19,9
S	3,0	111	9,3
X	9,5	350	2,9
К	25,0	890	1,1
Q	35,0	1250	0,8
W	95,0	3400	0,3

 $\Delta E = h \nu = g_e \beta B_o$

 $H = \beta \vec{B} \cdot \hat{g} \cdot \hat{S} + \hat{S} \cdot \hat{A} \cdot \hat{I} + \hat{S} \cdot \hat{D} \cdot \hat{S}$

Feld-Modulation und Signalform

Operando-EPR/UV-vis/Raman-Kopplung am ACA

A. Brückner, Chem. Commun. (2005) 1761.

Oxidative Dehydrierung von Propan an einem 6 % V/TiO₂ – Trägerkatalysator

$$CH_3 - CH_2 - CH_3 + \frac{1}{2}O_2 \Rightarrow CH_3 - CH = CH_2 + H_2O$$

6% V/anatase (2.2% sulfate) 8.3 % C₃H₈, 8.3 % O₂ / N₂ up to 250°C

8.3 % C_3H_8 , 8.3 % O_2 / N_2 at 250 – 450 °C

Selectivity increases with V reduction

8.3 % C_3H_8 , 8.3 % O_2 / N_2 at 250 – 450 °C

Nature of two different isolated VO²⁺

Nature of two different isolated VO²⁺

Influence of sulfate

- on sulfate-free anatase only species B observed A. Brückner et al., Z. Anorg. Allg. Chem. 631, 60, 2005
- hints for bonding of VO²⁺ and/or VO³⁺ to SO₄ also from FTIR and thermal analysis

 sulfate might stabilize VO²⁺ as active species on the surface prevents reduction to V³⁺ prevents agglomeration prevents diffusion into the bulk of the support

Literatur

- B. M. Weckhuysen (Ed.) "In situ Spectroscopy of Catalytic Solids", American Scientific Publishers, Stevenson Ranch, California, 2004.
- B. C. Gates, H. Knözinger (Eds.) Advances in Catalysis, Band 50 (2006), Band 51 (2007), Elsevier.
- J. W. Niemantsverdriet, "Spectroscopy in Catalysis", 3. Auflage, Wiley-VCH, Weinheim, 2007.
- J. F. Haw, "In-Situ Spectroscopy in Heterogeneous Catalysis", Wiley-VCH, Weinheim, 2002.
- M. Gerloch, "Orbitals, Terms and States", Wiley, 1986, ISBN: 047190966X
- F. Delanny (Ed.), "Characterization of Heterogeneous Catalysts", Marcel Dekker, 1984.
- Z. Sojka, F. Bozon-Verduraz, M. Che in: G Ertl, H. Knözinger, F. Schüth, J. Weitkamp (Eds.) "Handbook of Heterogeneous Catalysis", 2nd Edition, Wiley-VCH, 2008, Vol 2, p. 1039 ff.