Leibniz-Institut für Katalyse e. V.

an der Universität Rostock, Außenstelle Berlin

Angelika Brückner

UV-vis und EPR-Spektroskopie:

Grundlagen und Anwendungen in der Heterogenen Katalyse

Gesetzmäßigkeiten optischer und magnetischer Dipol-Übergänge

- Ermittlung spektroskopischer Terme
- Auswahlregeln
- Lage und Intensität optischer Übergänge
- Einfluss eines äußeren Magnetfeldes
- Apparatives
 - UV/VIS-Messungen in diffuser Reflexion
 - Prinzip und Einflussfaktoren von EPR-Messungen
- Anwendungsbeispiele aus der Katalyse

Regions of the electromagnetic spectrum

Quantenzahlen für Einzelelektronen

m_s ± 1/2

Ermittlung spektroskopischer Terme

Atome mit mehreren Elektronen

Bahn- und Spindrehimpuls vektoriell gekoppeltIRussel-Saunders-Kopplung (L-S)j - j - Kopplung $(s_m \cdot I_m) < (s_m \cdot s_n), (I_m \cdot I_n)$ bei d - Elementenbei schweren Elementen (f)

$$S = \sum_{i=1}^{n} s_i \qquad L = \sum_{i=1}^{n} l_i$$

$$j_i = s_i + l_i \qquad J = \sum_{i=1}^n j_i$$

Ermittlung spektroskopischer Terme

V³⁺ (d²)
$$I_1 = I_2 = 2$$
 $S_1 = S_2 = \frac{1}{2}$

	$\overrightarrow{\mathbf{L}} = \overrightarrow{\mathbf{l}}_1 + \overrightarrow{\mathbf{l}}_2$						
L	I ₁ + I ₂	I ₁ + I ₂ -1	I ₁ + I ₂ -2	I ₁ + I ₂ -3	₁ - ₂		
	4	3	2	1	0		
	G	F	D	Р	S		
ML	44	33	22	1 0 -1	0		
	$\overrightarrow{S} = \overrightarrow{S_1} + \overrightarrow{S_2}$						
S		1		0			
Ms	1	0 -1		0			
	$\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}$						
J	L+SL+S-1L-S						

vollständiges Termsymbol

Ermittlung der Terme für d²

ML	M _s =1	$M_s = 0$	M _s = -1	372 16
4	×	+- 22	×	
3	++ 21	+- 21 21	 2 1	
2	×	+ - 11	X	³ F 🔀
	20	20 20	20	
1	++ 10	+- 10 10	 1 0	3 53 1D
	2 -1	2 -1 2 -1	2 -1	
0	X	+ - 0 0	×	
	++ 1-1	++ 1-1 1-1	 1 -1	³ P 🔀
	2 -2	2-2 2-2	2 -2	
-1		•		39 19
-3				
-4				

Termschema für V³⁺ (oktaedrisch)

Elektronenkonfiguration

UV/VIS-Banden von $[V(H_2O)_6]^{3+}$

25700 cm-1 ${}^{3}T_{1g} \rightarrow {}^{3}T_{1g}$ 17800 cm-1 ${}^{3}T_{1g} \rightarrow {}^{3}T_{2g}$

Auswahlregeln

Absorption von Licht führt nicht zur Spinpaarung oder – entkopplung

Bahndrehimpuls eines Elektrons muss $\longrightarrow \Delta I \neq 0$ sich ändern

Übergänge zwischen Zuständen gleicher Parität sind verboten

u ⇔ g

Anregung von Übergängen

Symmetrieverhalten der d-Orbitale in oktaedrischen Komplexen

Influence on Δ (v_{d-d})

- Coordination geometry
- Valence state
- Atomic number
- Bond length between metal ion and ligand
- Temperature

 $\Delta_{\rm t} = 4/9 \Delta_{\rm oct}$

 Δ_{oct} (M²⁺) < Δ_{oct} (M³⁺)

 $\Delta \propto 1/r^5$

• Typ of ligand

Einfluss der Ordnungszahl

Beispiel 8. Nebengruppe

- 3d $[Co(NH_3)_6]^{3+}$ 23000 cm⁻¹
- 4d $[Rh(NH_3)_6]^{3+}$ 34000 cm⁻¹
- 5d $[Ir(NH_3)_6]^{3+}$ 41000 cm⁻¹

Influence on Δ (v_{d-d})

- Coordination geometry
- Valence state
- Atomic number
- Bond length between metal ion and ligand
- Temperature

$$\Delta_{t} = 4/9 \Delta_{oct}$$

$$\Delta_{\text{oct}}$$
 (M²⁺) < Δ_{oct} (M³⁺)

 $\Delta \propto 1/r^5$

$$\frac{\Delta_T}{\Delta_{RT}} = \left[\frac{V_{RT}}{V_T}\right]^{5/3}$$

• Typ of ligand

Franck-Condon-Prinzip

$$\mu = -e \int \varphi_{e'}^*(r) r \varphi_e(r) d\tau_{Elektron} \int \varphi_{v'}^*(R) \varphi_v(R) d\tau_{Kern}$$

Influence on Δ (v_{d-d})

- Coordination geometry
- Valence state
- Atomic number
- Bond length between
 metal ion and ligand
- Temperature

$$\Delta_{\rm t} = 4/9 \Delta_{\rm oct}$$

$$\Delta_{\text{oct}}$$
 (M²⁺) < Δ_{oct} (M³⁺)

 $\Delta \propto 1/r^5$

• Typ of ligand

Kristallfeld - Methode

- elektrostatische Wechselwirkung
 - der Elektronen des Metallions (Terme)
 - zwischen Metallelektronen und Liganden (Punktladungen) → Aufhebung der Orbitalentartung
- keine Berücksichtigung kovalenter Bindungsanteile
- UV-Spektren von Übergangsmetallionen ohne d-Elektronen nicht erklärbar

 Δ estimated from experimental UV-vis bands by Tanabe-Sugano diagrams

spektrochemische Reihe (steigendes Δ)

J < Br < CI < S < F < O < N < CSCN $OH^- NCS CN^ H_2O NH_3$ (COO)₂ Amine

nephelauxetische Reihe (abnehmendes β)

F > O > N > CI > Br > S ~ J > Se

 $\beta = B_{\text{Komplex}} / B_{\text{freies Ion}}$

UV-vis-Spektren von V⁵⁺ in verschiedenen Verbindungen

Warum liefert V⁵⁺

ein UV-vis-Spektrum ???

MO-Methode

MO-Schema von VO²⁺

Abhängigkeit des tiefsten CT-Übergangs von der Struktur der V⁵⁺-Spezies

Absorbierte und beobachtete Farben von Übergangsmetallionen

Informationen aus elektrischen (optischen) Dipol-Übergängen

- vollständig oxidierte Metallionen (z. B. V⁵⁺)
 - CT-Übergänge geben Auskunft über Koordination und Dispersion
- reduzierte Metallionen (z. B. V⁴⁺)
 - CT-Übergänge bei höheren Energien (z. T. Überlagerung mit V⁵⁺)
 - d-d Übergänge symmetrieverboten → schwach oder nicht detektierbar

Selektiver Nachweis für reduzierte V-Spezies notwendig

Wechselwirkung von Licht mit Festkörpern

Messtechniken: Diffuse Reflexion

Strahlungstransport – Gleichung:

-dI = -KIdx - SIdx + SJdx

dJ = -KJdx - SJdx + SIdx

Randbedingung: unendlich dicke Schicht

$$\mathsf{x} = \infty \quad \bigstar \quad (\mathsf{J}/\mathsf{I})_{\mathsf{x}=\infty} = \mathsf{R}_{\infty}$$

Kubelka-Munk-Funktion

$$F(R\infty) = \frac{(1-R\infty)^2}{2R\infty} = \frac{K}{S}$$

$$R\infty = rac{R_{
m Probe}}{R_{
m Standard}}$$

Voraussetzungen für die Gültigkeit der Kubelka-Munk-Theorie

- diffuse monochromatische Einstrahlung (bei starken Streuern ist auch parallele Einstrahlung möglich, da die reguläre Reflexion vernachlässigbar ist)
- unendliche Schichtdicke (bei 0 < d < ∞ trägt Untergrund zur Reflexion der Probe bei)
- Probe muss homogen sein
- Probe darf nicht fluoreszieren
- Probe darf nur schwach absorbieren, sonst ist der Anteil der Spiegelreflexion nicht mehr vernachlässigbar

Einfluss der Spiegelreflexion auf F(R)

Beeinflussung von F(R∞)

$$R_{exp} = (1-\alpha) R_{Diff} + \alpha$$

Einfluss der Konzentration auf F ($R\infty$)

Einfluss der Spiegelreflexion absorbierender Proben auf $F(R\infty)$

Pyren / NaCL bei $\lambda = 339 \text{ nm}$

Abhängigkeit des Streukoeffizienten S von der Partikelgröße (Glaspulver)

Apparative Anordnungen für diffuse Reflexionsspektroskopie

praying mantis

http://www.harricksci.com

Zelle für in situ-Messungen in diffuser Reflexion

A. Drochner et al., Chem. Eng. Technol. 23 (2000) 319.

Apparative Anordnungen für diffuse Reflexionsspektroskopie

Integrationskugel (Ulbricht-Kugel)

Apparative Anordnungen für diffuse Reflexionsspektroskopie

Struktur von VO_x auf mesoporösen Träger-Oxiden UV/VIS-DRS

Struktur von Fe³⁺ in MFI-Zeolithen UV/VIS-DRS

Redox behaviour of a supported VO_x catalyst

Quantification by simultaneous UV-vis/TPR

Estimation of the mean steady state V valence during propane oxidative dehydrogenation

Only few V sites (exposed on surface) reduced

Redox kinetics by UV-vis-DRS at 350°C

Redox activity of V sites

Cat- 450 > Cat- 600 >> Cat- 650