

ESR spectroscopy of catalytic systems - a primer

Thomas Risse

Fritz-Haber-Institute of Max-Planck Society Department of Chemical Physics Faradayweg 4-6 14195 Berlin

Colloidal solution of nanoparticles (in water at 300 K)

Colloidal solution of nanoparticles (in ice at 120 K)

- What is the nature of the paramagnetic center?
- Which interactions determine the observed spectra?
- Where does the difference between solution and solid come from?

Outline:

- Introduction
- Magnetic interactions of an unpaired electrons
 - Zeeman interaction
 - interactions with other electron spins (group spins and zero field splitting)
 - hyperfine interaction
- dynamics and line shape
- experimental aspects
- transition metal ions
 - electronic states and spin orbit coupling
 - ions in crystal or ligand fields
 - some examples (Ti³⁺,VO²⁺ (d¹), Mn²⁺ (d⁵), Co²⁺ (d⁷), Cu²⁺ (d⁹))

Introduction references

ESR spectroscopy

- J.A. Weil, J.R. Bolton, J.E. Wertz, *Electron Paramagnetic Resonance: Elementary Theory and Practical Applications*, Wiley, New York, 1994.
- N.M. Atherton *Principles of Electron Spin Resonance*, Ellis Horwood, New York 1993.
- W.Gordy, Theory and Applications of Electron Spin Resonance, Wiley, New York, 1980.
- A. Abragam, B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions*, Dover Publ. 1970.

Practical Aspects

C.P. Poole, *Electron Spin Resonance*, Dover, Mineola, 1996.

Basics of Magnetic Resonance

- C. P. Slichter *Principles of Magnetic Resonance*, Springer Series in Solid State Sciences, 3rd Ed., Springer, Berlin, 1996.
- R.R. Ernst, G. Bodenhausen and A.Wokaun, *Principles of NMR in one and two Dimensions*, Oxford University Press, Oxford, 1993.
- A. Abragam, Principles of Nuclear Magnetic Resonance, Clarendon, Oxford, 1983.

Introduction What kind of systems?

molecules, atomic species:

(diamagnetic) paramagnetic

metals:

(diamagnetic) paramagnetic ferromagnetic antiferromagnetic

compounds:

(diamagnetic) paramagnetic ferromagnetic antiferromagnetic

radicals: NO, O_2 , NO₂ reaction intermediates transition metal ions usually ferromagnetic metals e.g. Fe, Co, Ni

conduction band ESR for small particles

e.g. oxides, nitrides defects

ESR spectroscopy Zeeman interaction

Interaction of an angular momentum with a magnetic field:

classically:

E = - <u>μ</u> <u>B</u>

H = μ_B g <u>J B</u>

 $H = \mu_B g J_z B_0$

translation to QM if field is in z-direction:

eigenvalues: $E = \mu_B g B_0 M_J$

for
$$M_J = \pm 1/2$$
: $\Delta E = h_V = \mu_B g B_0$

ESR spectroscopy Zeeman interaction

 θ and ϕ describe the orientation of the static magnetic field in the g-matrix coordinate system

reason: hyperfine interaction; (2I+1)-states

ESR spectroscopy hyperfine interaction

What is hyperfine interaction?

interaction of an electron spin with a nuclear spin

isotropic, high field case $H = \mu_B g S_z B_0 - \gamma_n B_0 I_z + a_{iso} I_z S_z$

ESR spectroscopy hyperfine interaction

in general: two contributions

1. dipole-dipole interaction:

H = <u>S</u> T<u>I</u>

T is the anisotropic interaction matrix traceless => integral over a sphere vanishes

2. Fermi-contact interaction:

H = a_{iso} <u>S</u> <u>I</u>

isotropic, depend on the probability to find an electron at the position nucleus

 $H_{hfi} = \underline{S} A \underline{I}$ with $A = T + a_{iso} 1 1$: unit matrix

ESR spectroscopy hyperfine interaction

Solution:

1. High field approximation: $(m_s = \pm \frac{1}{2})$ $E(\theta,\phi) = \pm \frac{1}{2}g(\theta,\phi)\mu_B B \pm \frac{1}{2}m_I A(\theta,\phi)$

with: $g(\theta,\phi) = [\sin^2(\theta) \cos^2(\phi) g_x^2 +$ $\sin^2(\theta) \sin^2(\phi) g_y^2 +$ $\cos^2(\theta) g_z^2]^{1/2}$

 $\begin{aligned} \mathsf{A}(\theta, \phi) &= [\sin^2(\theta) \cos^2(\phi) \,\mathsf{A}_x^{\ 2} + \\ \sin^2(\theta) \sin^2(\phi) \,\mathsf{A}_y^{\ 2} + \\ \cos^2(\theta) \,\mathsf{A}_z^{\ 2}]^{1/2} \end{aligned}$

High limit inappropriate

hyperfine interaction only factor 4 smaller than Zeeman interaction

=> Breit Rabi region

T = 30 K

3800

B [G]

4200

From symmetry considerations:

=> Au atoms nucleate on terrace sites

Au on MgO(001) films Comparison EPR and STM

6 ML MgO(001)/Ag(001) + 0.005 ML Au

20 ML MgO(001)/Mo(001) 0.0025 ML Au

surface

interaction to one oxygen in the MgO lattice:

=> on-top of oxygen

M. Yulikov et al. Phys. Rev. Lett. 96, 146804 (2006).

Ne-matrix¹

¹ P. H. Kasai and J. D. McLeod, J. Chem. Phys. **55**, 1566 (1971).

surface

Isotropic hyperfine constant

=> Fermi-contact interaction: depend on the probability to find an electron at the position nucleus

Question:

Why is the spin density at the nucleus reduced as compared to the matrix?

surface

¹ A. Del Vitto et al., J. Phys. Chem. B **109**, 8040 (2005).

M. Yulikov et al. Phys. Rev. Lett. 96, 146804 (2006).

ESR spectroscopy basic considerations

axial g matrix $(g_x = g_y \neq g_z)$

Max-Planck-Gesellschaft

axial g matrix $(g_x = g_y \neq g_z)$

axial g matrix $(g_x = g_y \neq \overline{g_z})$

Max-Planck-Gesellschaft

axial g matrix $(g_x = g_y \neq g_z)$

axial g matrix $(g_x = g_y \neq \overline{g_z})$

ESR spectroscopy line shapes for powders

orthorhombic g matrix

 $(g_x \neq g_y \neq g_z)$

Max-Planck-Gesellschaft

ESR spectroscopy line shapes for powders

isotropic g

axial A matrix $(A_x = A_y \neq A_z)$

ESR spectroscopy line shapes for powders

isotropic g Same g and A parameter axial A matrix $(A_x = A_y \neq A_z)$ **BUT** linewidth x10 A_{x}, A g 339.2 339.6 339.8 338.5 339.5 340.5 339 339.4 338 339 340 341 B [mT] B [mT]

What to expect?

Li in MgO a simple example

What to expect?

- paramagnetic signal from an O⁻ species
- local c₄ axis => axial g-tensor
- hyperfine coupling to 1 Li ion (I = 5/2)
 => 6 lines
- local c₄ axis => axial A-tensor

Li in MgO a simple example

axial g + axial A

Li in MgO a simple example

axial g + axial A g_=2.054 impurity <u>50G</u> g_{ii}=2.004 320 325 330 335 340 B [mT]

J. X. Wang and J. H. Lunsford, J. Phys. Chem. 90, 5883 (1986).

ESR spectroscopy group spins and zero field splitting

Hund's rule: more than one energetically degenerate orbital: first fill one electron in each orbital

--- --- $S = s_1 + s_2 + s_3 = 3/2$

this results in a total spin S, also called group spin in short this group spin is often called electron spin S > $\frac{1}{2}$

there is an important consequence:

These system show an interaction which is mediated by the spin orbit interaction and is formally equivalent to the dipole interaction:

H_{zfs} = <u>S</u> *D* <u>S</u>

the interaction is independent of the field. This is also true for the hyperfine interaction, or the dipolar interaction but the zero field splitting is usually the leading term!

size of the effect can vary dramatically: from small for slightly distorted systems to very large such that no ESR signal can be observed

ESR spectroscopy effect of rotational motion

rigid limit

Max-Planck-Gesellschaft

ESR spectroscopy Solid vs. solution

Colloidal solution of nanoparticles (in water at 300 K)

Colloidal solution of nanoparticles (in ice at 120 K)

experimental aspects cw set-up at 10 GHz

- lock-in detection gives
 derivative of the absorption line
- 2. holds only true if modulation amplitude is small as compared to line width

experimental aspects resonators or cavities

experimental aspects intensity of ESR spectra

What determines the signal intensity?

- 1. transition probabilities (calculated from quantum mechanics)
- 2. absorbed microwave power

$$\overline{\mathsf{P}} = \frac{1}{2} \,\omega_0 \,\mathsf{H}_1^2 \,\chi''$$

 χ " = complex part of the high frequency susceptibility

obeys Curie's law => I(ESR Signal) ~ 1/T

 H_1 = oscillating magnetic field (perpendicular to the static magnetic field) depends on the quality factor Q of the resonator

rectangular cavity: $H_1^2 = \frac{\mu H_0^2 Q_L (1 - |\Gamma_0|^2) P_{inc}}{4\pi v_0 {\mu'}^2}$ Γ_0^2 : reflection coefficient μ,μ' : mag. perm. waveguide and cavity

 Γ_0 : reflection coefficient

and cavity

experimental aspects intensity of ESR spectra

What does this mean?

ESR is quantitative, but...

- relative numbers of spins in the sample: easy
- absolute numbers of spins in the sample: difficult

(one needs a calibration standard which is measured under exactly the same conditions (including sample shape and size, temperature, microwave settings etc.)

fraction of paramagnetic species as compared to the total number of species: very difficult

only possible with detailed knowledge of the paramagnetic species (transition probabilities, relaxation properties, coupling situation), an internal standard of known concentration, and the total number of sites in the sample

transition metal ions

electronic states and spin orbit coupling

We need the electronic ground state:

construction according to Hund's rules and Pauli principle

example: Co²⁺ (3d⁷) for the ground state configuration see literature

$$I = +2 +1 \quad 0 \quad -1 \quad -2$$

$$\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$$

$$L = 3, S = 3/2 \text{ (assuming LS coupling)}$$

no fields: degeneracy: (2S + 1)(2L + 1) = 28

if LS coupling is exactly correct: L = const. => g = g_e

spin orbit coupling lifts the degeneracy of states with equal L and S but different J

two contribution: 1. changes the splitting between states (m_S , m_{S+1}), shift of g_{iso}

2. depends on m_s^2 (only important for S > $\frac{1}{2}$) no contribution to g_{iso}

often neither LS nor jj coupling correct. The correction to the LS case can be made by the so-called Racah coefficients B and C which are tabulated

transition metal ions crystal or ligand field

no fields: degeneracy: (2S + 1)(2L + 1)

degeneracy is lifted partly by external electric fields

the external electric field can due to neighboring ions or ligands

lifting the degeneracy will lead to a partial decoupling of spin and orbit, thus the Racah coefficient are slightly small than in the free ion

transition metal ions

Fe³⁺, Mn²⁺ (d⁵)

Fe ³⁺ :	ground state 6S, high-spin (S=3/2), low-spin (S=1/2)
	in cubic symmetry: g _{iso} ≈ 2
	low symmetry: large zero-field splitting (only transitions within Kramers-Dubletts) large g-anisotropies $g_{\parallel} = 2$, $g_{\perp} = 6$
	97.8% of the isotopes have no nuclear moment => almost no hf-satallites
Mn ²⁺	isoelectronic to Fe ³⁺ ; just high spin systems of importance
	small g-anisotropy, much smaller zero-field splitting rf. Fe (a few GHz) transition between different Kramers multipletts possible
	⁵⁵ Mn (100%; I =5/2) => characteristic hyperfine pattern; usually well resolved because of small g-tensor anisotropy

transition metal ions Mn²⁺ (d⁵)

[Mn (dppm)₂(CO)(CNBu^t)]²⁺ dppm: Ph₂-P-CH₂-P-Ph₂

What to expect?

- 1. Mn (I = 5/2) => 6 groups
- 2. coupling to 4 ³¹P(I=1/2)
 (1:4:6:4:1)

G. A. Carriedo J. Chem. Soc., Dalton Trans. 1769 (1987).

transition metal ions Mn²⁺ (d⁵)

[Mn (dppm)₂(CO)(CN)]⁺ dppm: Ph₂-P-CH₂-P-Ph₂

What to expect?

- 1. Mn (I = 5/2) => 6 groups
- 2. coupling to 4 ³¹P(I=1/2)
 (1:4:6:4:1)

What is unexpected? Splitting between

G. A. Carriedo J. Chem. Soc., Dalton Trans. 3103 (1993).

transition metal ions Mn²⁺ (d⁵)

[Mn (dppm)₂(CO)(CN)]⁺ dppm: Ph₂-P-CH₂-P-Ph₂

G. A. Carriedo J. Chem. Soc., Dalton Trans. 3103 (1993).

transition metal ions Ti³⁺, VO²⁺ (d¹)

- Ti³⁺: typically 6 fold coordination in distorted octahedral symmetry often axial symmetric tensor $(g_x = g_y \neq g_z) g \approx 1.85 - 2$ 87% of the isotopes have no nuclear moment ⁴⁷Ti (7.4 %; I=5/2) and ⁴⁹Ti (5.4%; I =7/2)
 - => intense pattern due to g-anisotropy just weak satellites from hf-interaction

V⁴⁺, VO²⁺

isoelectronic to Ti³⁺, mostly VO²⁺ typical g-values: $g_{||} = 1.94$, $g_{\perp} = 1.98$ -1.99 ⁵¹V (99.75%; I =7/2) => characteristic hyperfine pattern; usually well resolved because of small g-tensor anisotropy

transition metal ions Cu²⁺ (d⁹)

Cu²⁺: ground state ^{2}D , S=1/2

usually distorted octahedral ligand field (tetragonal symm.) => axial symmetric tensor: g = 2 - 2.2; usually $g_{\parallel} < g_{\perp}$ distorted tetrahedral ligand field (tetragonal symm.) $g_{\parallel} > g_{\perp}$ is usually found

⁶³Cu (69.2%; I =3/2); ⁶⁵Cu (30.8%; I =3/2); almost equal gyromagnetic ratio => strongly overlapping hyperfine multipletts

transition metal ions

Cu²⁺ (d⁹)

C. Bolm et al., J. Am. Chem. Soc. 125, 6222 (2003).

transition metal ions Cu²⁺ (d⁹)

C. Bolm et al., J. Am. Chem. Soc. 125, 6222 (2003).

transition metal ions

Cu²⁺ (d⁹)

C. Bolm et al., J. Am. Chem. Soc. 125, 6222 (2003).

transition metal ions Co²⁺ (d⁷)

Co²⁺: ground state ⁴F, high-spin (S=3/2), low-spin (S=1/2) octahedral and tetrahedral ligand field are usually distored perfect octahedral symmetry: $g_{iso} = 4.3$ small distortion: g from 1.5 to 7; however, g_{iso} often close 4.3 in tetrahedral symmetry smaller deviations from g_e low symmetry: large zero-field splitting (usually not possible to observe a spectrum in solution, require low temperatures) ⁵⁹Co (100%; I =7/2) => eight line spectrum

Colloidal solution of nanoparticles (in water at 300 K)

isotropic spectrum consist of 8 lines
=> hyperfine interaction: I = 7/2
no line in the center
=> all nuclei carry a spin of 7/2
three possibilities: ⁵¹V, ⁵⁹Co, ¹⁸¹Ta

- moderate hyperfine anisotropy

 $(A_z \approx 20 \text{ mT}, A_x = A_y \approx 8 \text{ mT}) a_{iso} \approx 12 \text{ mT}$ - almost isotropic g-value

\Rightarrow no Co;

Ta and V have similar electronic structures however, the spin orbit coupling plays a much bigger role for Ta.

ESR spectroscopy transition metal ions

Fe in AIPO₄-5 two species: 1. g \approx 2 2. g \approx 4.3 1. species: octahedral coordinated

- Fe³⁺ on lattice positions
- species: extra lattice Fe³⁺ in a distorted tetrahedral environment

strong redistribution of sites upon heating. At high temperature minimal 3 different sites occupied by Fe³⁺. Regular lattice sites account for approx. 45% of the sites.

A. Brückner, U. Lohse, H. Mehner Microporous Mesoporous Mater. 20, 207 (1998).

Conclusions

EPR

- Can be done at elevated pressures (materials with dielectric losses are problematic; water, metals etc)
- Can be done at elevated temperature (in-situ experiments possible)
- Quantification of absolute amounts is in general difficult! Relative amounts are easier
- Spin physics can hamper the detection of signals

g- and A-matrices

- Information on site symmetry
- Information on electronic structure
- Information on neighboring atoms