

26.10.2007

Chemical (Elemental) Analysis

Raimund Horn

Dep. of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society

1. Introduction

- **1.1 Concentration Ranges**
- **1.2** Accuracy and Precision
- **1.3 Decision Limit, Detection Limit, Quantification Limit**
- 2. Methods for Quantitative Elemental Analysis
- 2.1 Chemical Methods
 - **2.1.1 Volumetric Methods**
 - **2.1.2 Gravimetric Methods**

- 2.2 Spectroscopic Methods
 - 2.2.1 Atomic Emission Spectroscopy
 - 2.2.2 Atomic Absorption Spectroscopy
 - 2.2.3 Inductively Coupled Plasma Mass Spectrometry
 - 2.2.4 X-Ray Fluorescence Spectroscopy
 - 2.2.5 Scanning Electron Microscopy Energy Dispersive X-Ray Fluorescence Spectroscopy (SEM-EDX)
- **3** Specification of an Analytical Result
- 4 Summary
- **5** Literature

1.1 Concentration Ranges

concentration ranges in elemental analysis

1. Introduction

1.1 Concentration Ranges

1. Introduction

1.2 Accuracy and Precision

What is the lowest concentration of an analyte that I can detect ?

- the lower the concentration of an analyte, the more difficult becomes its qualitative detection and its quantification
- stochastic errors become more and more pronounced
- the decision limit and the detection limit are lower limits characterizing the performance of a method to discriminate a true value from a blank value

1.3 Decision Limit, Detection Limit, Quantification Limit

What is the lowest concentration of an analyte that I can quantify ?

- > this depends on how precise you want the quantification to be
- you need to specify the relative precision for the result
- > very often k is chosen to be 3 (33.3% relative precision)

$$\frac{\Delta x_{QL}}{x_{QL}} = \frac{1}{k}$$

$$\Delta x = t_{\alpha/2,n-2} \frac{s_{cal}}{b_1} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(\bar{x}_s - \bar{x}_{cal})^2}{\sum_i^{(x_{i,cal} - \bar{x}_{cal})^2}}}$$

$$x_{QL} = k \cdot t_{\alpha/2,n-2} \frac{s_{cal}}{b_1} \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(x_{QL} - \bar{x}_{cal})^2}{\sum_i^{(x_{i,cal} - \bar{x}_{cal})^2}}}$$

$$the quantification limit x_{QL} is calculated recursively, e.g. with the decision limit x_{NG} as starting point$$

2.1 Chemical Methods

2.1.1 volumetric methods

2.1.2 gravimetric methods

2.1 Chemical Methods

2.1.1 Volumetric Methods - Principle

principle of volumetric methods $\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$

- fast, complete and stoichiometric well defined reaction
- the extend of the reaction can be monitored (e.g. pH, electric potential)
- the point of equivalence can be detected precisely (e.g. sudden color change, steep pH or potential change)

evaluation of the result

$$p = V_B \cdot k \cdot N \cdot \frac{100}{m_e} \quad \text{in \%}$$

p = percentage of the analyte in the sample
V_B = volume in ml dropped in from the burette
k = stoichiometric factor (mg analyte/ml)
N = correction factor for the theoretical value k
e = weighted sample (in mg)

$$\frac{\sigma_P}{p} = \sqrt{\left(\frac{\sigma_{m_e}}{m_e}\right)^2 + \left(\frac{\sigma_{V_B}}{V_B}\right)^2 + \left(\frac{\sigma_N}{N}\right)^2}$$

inserting typical values

$$0.1\% < \frac{\sigma_P}{p} < 1\%$$

advantage: high precision!!!

acid – base reaction: $H_nA + nBOH \oplus A^{n-} + nB^+ + nH_2O(z_A=n, z_B=1)$

titration curve:
$$\tau = \frac{z_B \cdot C_B \cdot V_B}{z_A \cdot C_A \cdot V_A} = \frac{K_a}{10^{-pH} + K_a} + \frac{V_S + V}{C_S \cdot V_S} \cdot \left(\frac{K_w}{10^{-pH}} - 10^{-pH}\right) K_w = [H^+][OH^-]$$

choice of the indicator depends on K_a

$$pH = pK_{a,Ind} \pm 1$$

- very weak acids (bases) can be titrated in non-aqueous solvents as liquid ammonia or 100% acetic acid
- application of acid base titration: determination of nitrogen (NH₃, NO₃⁻, NO₂⁻...), sulfur (e.g. as H₂SO₃, H₂SO₄), phosphorous, boron (as boric acid), carbon (e.g. in carbonates, CO₂)

2.3 Chemical Methods

2.1.1 Volumetric Methods - Complexometry

complex formation: $nL + M^{m+} \oplus ML_n^{m+}$ most used ligand - EDTA $H_{4-n}Y^{n-} + M^{m+} \oplus [MY]^{(m-4)} + (4-n)H^{+}(z_A=1, z_B=1)$ $\begin{bmatrix} M^{m+1} \end{bmatrix} = \frac{\begin{bmatrix} MY^{(m-4)} \end{bmatrix}}{K_f \cdot \begin{bmatrix} EDTA \end{bmatrix}_{total} \cdot \alpha_{Y^{4-1}}}$ $\begin{bmatrix} 2 & -C & -ONa \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} M^{m+1} \end{bmatrix} = \frac{\begin{bmatrix} MY^{(m-4)} \end{bmatrix}}{K_f \cdot \begin{bmatrix} EDTA \end{bmatrix}_{total} \cdot \alpha_{Y^{4-1}}}$ $\begin{bmatrix} 2 & -C & -ONa \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & -C & -ONa \\ 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} M^{m+1} \end{bmatrix} = \frac{\begin{bmatrix} MY^{(m-4)} \end{bmatrix}}{K_f \cdot \begin{bmatrix} EDTA \end{bmatrix}_{total} \cdot \alpha_{Y^{4-1}}}$ $\Rightarrow \text{ buffer required}$ NaO - C -NaO - C complex formation only with Y⁴⁻ \Rightarrow buffer required M-EDTA chelate SO3 Na⁺ indication: HI²⁻ + M^{m+} ⊕ MI^(m-3) + H⁺ O_2N e.g. Eriochrom Black T applicable for the determination of: N = NMg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ at pH 8-11 Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Al³⁺, Pb²⁺, VO²⁺ at pH 4-7

Bi³⁺, Co³⁺, Cr³⁺, Fe³⁺, Ga³⁺, In³⁺, Sc³⁺, Ti³⁺, V³⁺, Th⁴⁺, Hg²⁺, Sn²⁺ at pH 1-4

 $\tau >$

2.1 Chemical Methods

2.1.1 Volumetric Methods – Redox Titration

redox reaction:
$$n_BOx_B + n_ARed_A \oplus n_BRed_B + n_AOx_A$$
 $(z_A=n_B, z_B=n_A)$
examples: $MnO_4^- + 5Fe^{2+} + 8H^+ \oplus Mn^{2+} + 5Fe^{3+} + 4H_2O$
 $Ce^{4+} + Fe^{2+} \oplus Ce^{3+} + Fe^{3+}$
 $\tau = \frac{z_A \cdot C_A \cdot V_A}{z_B \cdot C_B \cdot V_B}$
 $0 < \tau < 1$ $U = U_A = U_A^{\oplus} + \frac{RT}{n_BF} \cdot \ln \frac{\tau}{1-\tau}$
 $\tau = 1$ $U_{eq} = \frac{n_A U_B^{\oplus} + n_B U_A^{\oplus}}{n_A + n_B}$
 $\tau > 1$ $U = U_B = U_B^{\oplus} + \frac{RT}{n_AF} \cdot \ln(\tau - 1)$

indication: self indication (violet $MnO_4^- \rightarrow colorless Mn^{2+}$) redox indicator (In_{Red} @ In_{Ox} + ne⁻) potentiometric endpoint detection

2.1.2 Gravimetric Methods

precipitation reaction: $v_+M^{z+}(aq) + v_-A^{z-}(aq) \leftrightarrow M_{v_+}A_{v_-}(s)$

- precipitation of the ion to be determined by a suitable precipitating agent
- Filtering and washing of the precipitate
- > transformation into a compound of well defined stoichiometry (drying/calcination) \rightarrow weighing

examples

 $Ba^{2+} + SO_4^{2-} \otimes BaSO_4$ (K_L=[Ba²⁺]·[SO₄²⁻]=1·10⁻¹⁰mol²/l²) as BaSO₄

 $Fe^{3+} + 3OH^{-} = Fe(OH)_{3}$ (K_L=[Fe³⁺]·[OH⁻]³=1·10⁻³⁸mol⁴/l⁴) as Fe₂O₃

$$[M^{z+}] = \frac{v_{+} + v_{-}}{\sqrt{K_{L} \left(\frac{v_{+}}{v_{-}}\right)^{v_{-}}}} \quad [A^{z-}] = \frac{v_{+} + v_{-}}{\sqrt{K_{L} \left(\frac{v_{-}}{v_{+}}\right)^{v_{+}}}}$$

For analytical purposes:

$$= 1 - \frac{[M^{z+}] \cdot V}{[M^{z+}]_o \cdot V_0} \ge 0.997$$

➤ advantage

 \Rightarrow one of the most precise analytical methods

 α_n

$$\frac{\sigma_m}{m} = \sqrt{\left(\frac{\sigma_{m_e}}{m_e}\right)^2 + \left(\frac{\sigma_{m_a}}{m_a}\right)^2} \quad 0.01\% < \frac{\sigma_m}{m} < 0.1\%$$

- 2.2.1 Atomic Emission Spectroscopy (AES)
- 2.2.2 Atomic Absorption Spectroscopy (AAS)
- 2.2.3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
- 2.2.4 X-Ray Fluorescence Spectroscopy (XRF)
- 2.2.5 Scanning Electron Microscopy-Energy - Dispersive X-Ray Fluorescence Spectroscopy (SEM-EDX)

2.2.1 Atomic Emission Spectroscopy

- history: one of the oldest methods for elemental analysis (flame emission - Bunsen, Kirchhoff 1860)
- > principle: recording of line spectra emitted by excited atoms or ions during radiative de-excitation (valence electrons)

optical transitions and emission spectrum of H (visible lines = Balmer series)

intensity of an emission line

$$I = \Phi\left(\frac{h \cdot c \cdot g_m \cdot A \cdot N}{4\pi \cdot \lambda \cdot Z}\right) \cdot \exp\left(\frac{-E_m}{kT}\right)$$

- intensity of a spectral line ~N, i.e. ~C
- population of excited states requires high temperatures (typical 2000 K-7000 K)
- relative method, calibration required

2.2.1 Atomic Emission Spectroscopy

analytical performance

- multielement method (with arc 60-70 elements)
- ➢ presiscion: ≤ 1% RSD for spark, flame and plasma; arc 5-10% RSD
- decision limits: 0.1-1 ppm with arc, 1-10ppm with spark, 1ppb-10ppm with flame, 10ppt-5ppb for ICP

application:

- flame AES low cost system for alkali and earth alkaline metals
- ICP AES suited for any sample that can be brought into solution
- arc AES with photographic plate for qualitative overview analysis
- spark AES unsurpassable for metal analysis (steel, alloys)
- laser ablation for direct analysis of solids (transient signals)

 \mathbf{E}_{exc}

in cm⁻¹

2.2.2 Atomic Absorption Spectroscopy

principle: measurement of the absorption of light by free atoms in their electronic ground state

 $\mathbf{3s}^2$

■^{3/2} 5p

linear relation between absorbance and concentration

$$A_{abs} = \log\left(\frac{I_0}{I}\right) = 0.434 \cdot A \cdot \frac{g_m}{g_0} \cdot \frac{\lambda^4}{8\pi c} \cdot \frac{1}{\Delta \lambda_{eff}} \cdot n_0 \cdot l$$

radiation source

- > atomic absorption lines are very small ($\Delta\lambda \leq 0.005$ nm) \Rightarrow narrow excitation lines required
- ➢ hollow cathode lamp filled with Ar
 (~5 Torr) ⇒ discharge in cathode cup
- cup-shaped cathode made from the element to be determined of sharp de-excitation lines

working principle of hollow cathode lamps

source of free atoms

flame

- pneumatic nebulization of the liquid sample into the flame or hydrid generation (e.g. for As, Bi, Ge)
- air/C₂H₂ for nonrefractory elements (e.g. Ca, Cr, Fe)
- > N_2O/C_2H_2 for refractory elements (e.g. Al, Si, Ta)

graphite furnace

- electrically heated graphite tube (T_{max}=3000°C, under Ar)
- ➤ T vs. t program ⇒ drying, ashing, atomization, cleaning
- transient signals
- Iiquid and solid samples

2.2.2 Atomic Absorption Spectroscopy

interferences in atomic absorption spectroscopy

- ➢ flame and furnace AAS are sensitive to matrix interferences ⇒ i.e. matrix constituents (anything but the analyte) influence the analyte signal
- \succ there are two types of interferences \Rightarrow chemical and spectral interferences

chemical interferences

- ➢ limited temperature of the flame does not ensure full dissociation and atomization of thermally stable compounds (e.g. Ca phosphates) ⇒ hotter N₂O flame (La buffer)
- large amounts of easily ionized elements (alkali metals) modifies the equilibrium between atoms and ions ⇒ adding excess of Cs
- ➢ loss of volatile analyte species during the ashing process in GF-AAS (e.g. ZnCl₂) ⇒ adding of matrix modifiers

 $NH_4NO_3 + NaCI \rightarrow NH_4CI + NaNO_3$

spectral interferences

- ➤ two spectral lines overlap within the band pass of the dispersive element (e.g. $\Delta\lambda_d \approx 0.1$ nm, Cd 228.802nm and As 228.812nm) ⇒ select another line
- nonspecific absorptions from solid or liquid particles in the atomizer (e.g. light scatterring by liquid or solid NaCl particles)
- emission of molecular bands by molecules and radicals present in the atomizer (metal halides from 200 - 400nm)
- background correction necessary

deuterium background correction

- deuterium lamp emits a continuous spectrum in the range 200-380nm
- > alternating measurement of deuterium and hollow cathode lamp absorption

setup sketch

working principle

Zeeman background correction

- Zeeman effect: splitting of atomic energy levels in a magnetic field
- > applied in AAS for correction of strong varying backgrounds

normal Zeeman effect (S=0)

(e.g. Cd atoms)

analytical performance

AAS is most popular among the instrumental methods for elemental analysis

flame-AAS:

- relatively good limits decision limits (ng/ml)
- working range mg/l (liner range)
- easy to use, stable, comparably cheap
- few and well known spectral interferences
- single element method (up to 6 in parallel)
- high sample consumption

graphite furnace – AAS:

- superior decision limits (pg/ml) (trace and ultra-trace analysis)
- very low sample consumption
- analysis of solids and liquids
- analyte matrix separation possible
- demanding operation

5			**	Th	Pa	92 U	Np 93	Pu	Am	Cm ⁹⁶	Bk ⁹⁷	Cf	Es	Fm	Md	102 NO	103 Lr	
			•	58 Ce 569.9	59 Pr 94 495.1	60 Nd 492.4	Pm	62 Sm 429.7	63 Eu 459.4	64 Gd 368.4	65 Tb 02 432.7	66 Dy 421.2	67 HO 410.4	68 Er 400.8	69 Tm 371.8	70 Yb 398.8	71 Lu 02 336.0	
	Fr ⁸⁷	Ra	Ac**															
5	65 CS 852.1	Ba 553.6	57 La*	72 Hf 286.6	73 Ta 271.5	W 255.1	75 Re 346.0	05 290.9	77 r 208.9	78 Pt 265.9	79 Au 242.8	Hg 253.7	11 276.8	Pb	Bi 2222.8	Po	At	R
	Rb 780.0	Sr 04 460.7	39 Y 410.2	Zr 360.1	Nb 334.4	42 Mo 313.3	40 TC 261.4	Ru 349.9	Rh 343.5	Pd 244.8	Ag 328.1	Cd 228.8	In 303.9	50 Sn 286.3	51 Sb 217.6	Te 214.3	1 ⁵³	X
)	19 K 766.5	20 Ca 422.7	SC 391.2	22 Ti 364.3	V 318.4	Cr 357.9	25 Mn 279.5	Fe 246.3	CO 240.7	28 Ni 232.0	29 Cu 324.8	213.9	31 Ga 287.4	32 Ge 265.1	30 As 193.7	34 Se 196.0	Br	к
	Na 589.0	Mg 285.2	III B	IV B	VB	VI B	VII B		VIII	_	I B	II B	AI 309.3	Si 251.6	P 213.6	16 S 180.7	CI	A
	Li 670.8	Be 234.9		Е ² 324.8	Elan Elan Erg Prin	onenzahl nentsymbol fohlene Spi direstertär	Ala (cva) sygtuaija (cva	9	Elemente Loh/A	bestimmbar bestimmbar betylen Plan ba'Acetylen	mmenar in me Flamme	t	B 07 249.7	c	N	0	F	N
	H,	PERKIN ELMER												н				
	IA	II A	1										III A	IV A	VA	VI A	VII A	0

LI 0.7 2 0.1	Be 0.07 1 0.02		Nachweisgrenzen (ng/mL)									B 1 500 15	C 10	N	0	F	No
Na 3 0.2 0.0005	Mg 0.08 0,3 0.004		5 Flammenatomabsorption 0.02 Graphitrohr-Atomabsorption									Al 2 30 0.01	5 100 0.1	P 7 40.000 30	S 3	a	Ar
K 20 3 0.1	Ca 0.07 0.5 0.01	Sc 0.3 40 -	TI 0.4 70 0.5	V 0.7 50 0.2	Č 2 3 0.01	Mn 0.2 2 0.01	Fe 0.7 5 0.02	Co 1 4 0.02	NI 3 90 0.1	Cu 0.9 1 0.02	Zn 0.6 0.5 0.001	Ga 10 60 0.5	Ge 20 200	As 7 200 0.2	Se 10 250 0.5	Br	Kr
Rb 1 7 0.05	Sr 0.2 2 0.1	Y 0.6 200	Zr 2 1000	Nb 5 2000	Mo 3 20 0.02	Tc	Ru 10 60 1	Rh 20 4 -	Pd 4 10 0.3	Ag 0.8 2 0.005	Cd 0.5 0.4 0.003	In 20 40 1	Sn 9 30 0.2	Sb 9 40 0.15	Te 4 30 0.1	1	Xe
Cs 40.000 4 0.2	Ba 0.6 10 0.04	La 1 2000 -	Hf 4 2000 -	Ta 10 2000 -	W 8 1000 -	Re 3 600 -	0s 0.2 100	lr 7 400 -	Pt 7 100 0.2	Au 2 10 0.1	Hg 7 150 2	TI 10 20 0.1	Pb 10 10 0.05	BI 7 40 0.1	Po	At	Rn
Ce 2 -	Pr 9 6000	Nd 10 1000	Pm	Sm 10 1000	Eu 0.9 20 0.5	Gd 5 2000	Tb 6 500 0.1	Dy 2 30 1	Ho 2 40	Er 0.7 30 2	Tm 2 900	Y5 0.3 4	Lu 0.3 300]			
Th 7 -	Pa	U 60 40.000	Np	Ри	Am	Cm	Bk	CI	Es	Fm	Md	No	ŀ				

- a mass spectrometer separates a stream of gaseous ions into ions with different mass to charge ratio m/z (mass range in inorganic mass spectrometry from 1 – 300 u)
- in combination with an ion source (ICP, spark, glow discharge, laser ablation) as analytical method for elemental analysis
- most popular combination => Inductively Coupled Plasma + quadrupol Mass Spectrometer = ICP - MS

Rotary1

Rotary 2

Vacuum pumps

setup scheme

sample introduction

- pneumatic nebulizer(liquid samples)
- electro thermal vaporization (graphite furnace)

liquid and solid samples

- Iaser ablation
 - solid samples

2.2.3 Inductively Coupled Plasma Mass Spectrometry

ICP as ion source

Plasma generation by inductively heating of a gas (e.g. argon) using a high frequency field

ICP assembly

- ➤ ICP works under atmospheric pressure, MS under high vacuum ⇒ differentially pumped interface required
- typical RF frequencies 27 or 40 MHz
- power consumption 1 5 kW

2.2.3 Inductively Coupled Plasma Mass Spectrometry

- Sample transformations in the plasma:
 desolvation → vaporization → atomization → ionization
- ➢ ionization behavior depends on the temperature ⇒ Saha equation describes degree of ionization in a plasma

Saha equation

$$\frac{n_{i+1} \cdot n_{e}}{n_{i}} = \frac{2}{\Lambda^{3}} \frac{g_{i+1}}{g_{i}} \exp\left[-\frac{(\varepsilon_{i+1} - \varepsilon_{i})}{k_{B}T}\right]$$

thermal de Broglie wavelength

$$\Lambda = \sqrt{\frac{h^2}{2\pi m_e k_B T}}$$

> example: Ar⁰ (¹S₀) → Ar⁺ (²P_{3/2}) I₊=15.76 eV, 1 bar Na⁰ (²S_{1/2}) → Na⁺ (¹S₀) I₊=5.14 eV

2.2.3 Inductively Coupled Plasma Mass Spectrometry

determination of elements Z < 80 u by ICP - MS suffers from spectral interferences caused by the plasma gas, solvent, sample matrix etc.

Spectral interferences cause a high background ⇒ higher decision limit for disturbed analytes (e.g. x_d(Fe)≈10 µg/l, x_d(Ag)≈0.03 µg/l)

2.2.3 ETV – ICP – MS

Analyte – matrix separation by coupling of an ElectroThermal Vaporization to the ICP-MS → ETV-ICP-MS

scheme of the ETV unit

quenching of the sample vapor by mixing it with cold carrier gas

$$d_{k} = 4\sigma \cdot \frac{V_{m}}{k \cdot T \cdot \ln S} \qquad S = \frac{p}{p_{eq}(T)}$$

sample transport as condensed particles if the condensation nuclei exceed the critical diameter

setup picture

operation principle

2.3 Spectroscopic Methods 2.2.3 ETV – ICP – MS

- one touchstone in ICP-MS analytics is the determination of light elements in saline solutions, e.g. seawater)
- example: Zn determination in sea water

ion	64 u	66 u	67 u	68 u	concentration in seawater
Zn ²⁺	48.6% n.a.	27.9% n.a.	4.1% n.a.	18.8% n.a.	~1 ng/ml
Cl			³⁵ Cl ¹⁶ O ¹⁶ O ⁺	³⁵ Cl ¹⁶ O ¹⁷ O ⁺	ca. 16 mg/l
SO ₄ ²⁻	³² S ¹⁶ O ¹⁶ O ⁺ ³² S ³² S ⁺	$\begin{array}{r} 34S^{16}O^{16}O^{+}\\ 32S^{34}S^{+}\\ 33S^{33}S^{+}\\ 32S^{17}O^{17}O^{+}\\ 32S^{16}O^{18}O^{+}\\ 33S^{16}O^{17}O^{+}\\ \end{array}$	$\begin{array}{r} 33 \mathrm{S}^{34} \mathrm{S}^{+} \\ 32 \mathrm{S}^{17} \mathrm{O}^{18} \mathrm{O}^{+} \\ 33 \mathrm{S}^{16} \mathrm{O}^{18} \mathrm{O}^{+} \\ 33 \mathrm{S}^{17} \mathrm{O}^{17} \mathrm{O}^{+} \\ 34 \mathrm{S}^{16} \mathrm{O}^{17} \mathrm{O}^{+} \end{array}$	$\begin{array}{r} 36S^{16}O^{16}O^+\\ 32S^{36}S^+\\ 34S^{17}O^{17}O^+\\ 34S^{16}O^{18}O^+\\ 34S^{34}S^+\\ 33S^{17}O^{18}O^+\\ 32S^{18}O^{18}O^+\\ \end{array}$	ca. 2 mg/l
Mg ²⁺	²⁴ Mg ⁴⁰ Ar ⁺ ²⁶ Mg ³⁸ Ar ⁺	²⁶ Mg ⁴⁰ Ar ⁺			ca. 1 mg/ml

relevant spectral interferences

2.3 Spectroscopic Methods 2.2.3 ETV – ICP – MS

- analyte matrix separation by ETV
- sample matrix can be vaporized prior the analyte or in reversed fashion
- application of modifiers (ETV as thermochemical reactor, cp. atomic absorption spectroscopy)

resulting temperature – time program

step	T/°C	ramp time / s	hold time / s	function
1	150	10	60	drying
2	150	0	30	baseline
3	800	1	59	Zn vaporization (prob. as ZnCl ₂ BP=732°C)
4	2500	5	5	cleaning

application to the Zn in seawater problem

- \succ if matrix matched calibration samples are not available \Rightarrow standard addition
- > principle of the standard addition method: measurement of the analysis sample

Zn in seawater by ETV-ICP-MS

- stepwise addition of analyte $(x_{+}=x_{A}...4x_{A})$
- evaluation of x_A by extrapolation of the calibration function to the intercept point with the x-axis $(y=f(x_+)=0 \Rightarrow x_A)$

2.2.3 Inductively Coupled Plasma Mass Spectrometry

analytical performance of ICP-MS

- > multi-element method (more than 20 analytes in parallel)
- good performance in precision (a few percent), accuracy, number of determinable elements, decision limit (depending on the instrument 0.01-100 ng/l) and sample throughput
- \succ linear dynamic range \Rightarrow 3-5 orders of magnitude
- difficult for elements with m/z < 80 u (spectral interferences)</p>
- mostly applied for liquid sample, ETV and laser vaporization enable direct analysis of solid samples
- > supplies information about the isotopic ratio of an element
 - isotop dilution analysis for ultra-trace analysis (sub ppt range)
 - age determination of biological and geological samples
- > relatively young analysis method (1980) \Rightarrow high innovative potential

- > instrumental analytical technique for the elemental analysis of solids and liquids
- > wide concentration ranges (ppm %), minimal sample preparation, boron-uranium
- principle: detection of element specific X rays (characteristic X-rays) emitted from a sample under X-ray excitation (X-ray fluorescence)

interaction of X-rays with matter

emission of a core level electron (here from copper) by absorption of a X-ray photon

energetic relaxation by X-ray fluorescence

- > transitions are governed by quantum mechanical selection rules (∆n>1, ∆l=⊕1, ∆j=0,⊕1)
- K lines originate from vacancies in the K – shell, L – lines from vacancies in the L – shell …
- denotation of lines:
 i) IUPAC notation Fe KL₃
 ii) Siegbahn notation Fe α1
- line intensities depend on:
 i) the energetic difference of the levels (the higher the energetic difference the lower the transition probability)
 ii) the degeneracy of the levels
 iii) the fluorescence yield
- K lines best suited for analysis of elements Z < 45 (Rh) (mostly K-L_{3,2})
- L lines for analysis of elements Z > 45 (mostly L₃-M_{5,4})

atomic energy levels and allowed transitions

instrumentation – X-ray source

- generation of X-rays by collision of high energetic electrons with a pure metal target (Rh, Mo, Cr, Ag, W)
- continuous X-rays by decelerating collisions with the target atoms (Bremsstrahlung)
- characteristic X-rays by refilling of core level vacancies in the target atoms created by the impinging electrons
- the short wavelength limit of the source depends on the accelerating voltage, the long wavelength tail depends on the Bewindow thickness
- > only ~1% of the electric power is converted to X-rays, rest is heat ⇒ effective water or air cooling required
- ➢ quantitative work ⇒ stable filament heating and accelerating voltage required

instrumentation – wavelength dispersive instruments (WDXRF)

irradiated sample emits polychromatic X-rays

- crystal as dispersive element
- wavelength selection according to Bragg's law

 $n \cdot \lambda = 2 \cdot d \cdot \sin \theta$

➤ wavelength scan by varying θ ⇒ rotation of the crystal with respect to the incoming beam

instrumentation – energy dispersive instruments (EDXRF)

energy dispersion and X-ray photon counting in one step

> detector ⇒ semiconductor crystal
 (Si(Li), hyperpure Ge) at liquid nitrogen
 temperature (-196°C)

➢ incoming X-ray photons create electron hole pairs ⇒ current ⇒ voltage pulse

the number of electron – hole pairs is proportional to the energy

best suited for energies > 2 keV

example

> an Fe K-L3,2 X-ray photon (E=6.400keV) hits a Si detector

> energy to create 1 electron – hole pair = $3.85eV \Rightarrow$ creation of 1662 ehp's

the preamplifier converts this current in voltage pulse of e.g. 32mV

> a connected ADC translates the amplified pulse height into a digital number, e.g. $320 \Rightarrow$ channel 320 in a memory is increased by 1

➤ common memories employ 1024 or 2048 channels (0-20 keV and 0 – 40 keV respectively) ⇒ resolution ~20 eV

- > application of XRF: qualitative and quantitative analysis of elements with $Z \ge 9$ (F) \Rightarrow multi-element method
- relatively simple sample preparation
 (bulk solids, pressed powder pellets, fused discs, liquids)
- > information depth in the μ m range \Rightarrow homogeneous and smoothed surface required
- qualitative analysis by recording the entire fluorescence spectrum assisted element identification by assigning the element specific K,L,M – lines

2.2.5 SEM-EDX

SEM-EDX at the Fritz-Haber-Institute (Inorganic Chemistry Department)

2.2.5 SEM-EDX

 > 2D elemental analysis by combination of Scanning Electron Microscopy and X-Ray Fluorescence Analysis

SEM instrumentation

- topographic sample image by synchronizing the TV – scanner with the scanning coils
- X-ray detection by a solid state detector (Si single crystal) as in XRF (not shown above)

2.2.5 SEM-EDX

information depths, spatial resolution

in most cases, the SEM image is created using secondary electrons

> secondary electrons are of low energy (<50eV), surface sensitive and supply an topographic image of the sample surface

> spatial resolution < 0.1 ①
possible</pre>

secondary electron image

synthetic graphite (25keV, ×3000)

2.2.5 SEM-EDX

- X-ray generation process similar to XRF
- X-ray spatial resolution much lower than by secondary electrons
- information depth from characteristic X-rays in µm range

2.2.5 SEM-EDX

example

analytical performance

- qualitative elemental analysis from
 Z > 11 by identification of the characteristic KLM peaks (software assisted)
- detection limit ~1%
- minimal sample preparation and sample damage
- quantitative analysis can be performed from element concentrations of 1 – 100% with a relative precision of 1-5%
- similar to XAF, relating net peak intensity with element concentration requires either sophisticated mathematical models (e.g. ZAF correction) or suitable calibration samples

(pinhole for molecular beam setup)

- Any quantitative analysis relies on a relationship between the measurement value y and the analyte concentration $x \Rightarrow y = f(x)$
- if y = f(x) is known, x can be calculated by $x = f^{-1}(y)$
- > the mathematical form of f(x) and $f^{-1}(y)$ depends on the analytical method

analytical methods									
		relative methods							
absolute methods	dofinito mothedo	reference	e methods						
	definite methods	direct RM	indirect RM						
	y = f(x)								
b = F	b = k⋅F	$b = y_r/x_r$	y = a+bx						

if the accuracy of the method is assured (e.g. by certified reference materials), the analytical result can be specified as follows

 $x = \overline{x} \pm \Delta \overline{x}$

 \overline{x} = mean of n_p parallel determinations

 $\Delta \overline{x}$ = prediction interval of \overline{x}

- ➢ verbal: with a probability of P is the concentration x of the analyte A in the concentration range $\overline{x} \pm \Delta \overline{x}$
- results from measurements with absolute, definite and direct reference methods can be evaluated using n_p parallel determinations (entire sample preparation process) and the uncertainties of all values in b using the rules of error propagation ⇒ x = b⁻¹·y
- specification of results from measurements with an indirect reference method (experimental calibration) requires to evaluate both the uncertainty of the analysis and of the calibration

example 1: gravimetric determination of Fe₂O₃ in an iron ore

> results of n_p =5 parallel determinations 38,71% 38,99% 38,62% 38,74% 38,73%

mean:
$$\overline{x} = \frac{1}{n_p} \sum_{i} x_i = 38.76\%$$
 standard deviation: $s = \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{n_p - 1}} = 0.1381\%$

degrees of freedom :
$$f = n_p - 1 = 4$$

confidence level : P = 95%

f	P = 0,50	0,75	0,90	0,95	0,98	0,99
1	1,00	2,41	6,31	12,7	31,82	63,7
2	0,816	1,60	2,92	4,30	6,97	9,92
3	0,765	1,42	2,35	3,18	4,54	5,84
4	0,741	1,34	2,13	2,78	3,75	4,60
5	0,727	1,30	2,01	2,57	3,37	4,03
6	0,718	1,27	1,94	2,45	3,14	3,71
	S	$\cdot t(0.95, 4)$	4)	0.13	381%·2.7	78
$\overline{x} \pm \overline{x}$	$\Delta \overline{\mathbf{x}} = \overline{x} \pm -$		<i>∸</i> = 38.7	6%±		$-=38.76\%\pm0$

example 2: Zn determination by AAS

- > calibration: m samples $(x_i, y_i) \Rightarrow f = m-2$
- > x_i taken as error free
- least squares fit

x _i /ppm	2	4	6	8	10
y _i (E=log(I ₀ /I))	0.266	0.598	0.856	1.222	1.467

MAX-PLANCK-CESELISCHAL

a wide variety of methods are available to determine quantitatively the elemental composition of inorganic samples

the choice of the right method depends on numerous parameters (liquid or solid sample, available amount of sample, which and how many elements, expected concentrations, accuracy and precision, decision limit...)

General Analytical Chemistry

Kellner R.; Mermet J.-M.; Otto M.; Valcárcel M.; Widmer H. M.; *Analytical Chemistry*. Wiley-VCH, Weinheim, 2nd edition, 2004.

Chemical Methods for Elemental Analysis

Ackermann G.; Jugelt W.; Möbius H.-H.; Suschke H. D.; Werner G.; *Elektrolytgleichgewichte und Elektrochemie*. Lehrwerk Chemie, Vol. 5, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 5th edition, 1987

Electroanalytical Methods

Scholz F.; Electroanalytical Methods. Springer Verlag, Berlin, 1st edition, 2002

Analytical Atomic Spectrometry

Broekaert J. A.; *Analytical Atomic Spectrometry with Plasmas and Flames*. Wiley-VCH, Weinheim, 1st edition, 2001

Evans E. H.; Fisher A.; *An Introduction to Analytical Atomic Spectrometry*. Jon Wiley and Sons Ltd, 2nd edition, 2002

Welz B.; Sperling M.; Atomic Absorption Spectroscopy. Wiley-VCH, 3rd edition, 1998

Montaser A.; Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, 1998

Lachance G. R.; Claisse F.; *Quantitative X-Ray Fluorescence Analysis*. John Wiley & Sons Ltd, 1995

Energy Dispersive X-Ray Microanalysis

Goldstein J.; *Scanning Electron Microscopy and X-Ray Microanalysis*. Plenum Publishing Corp., New York, 3rd edition, 2002

Statistics and Chemometrics

Doerffel K.; *Statistik in der Analytischen Chemie*. Deutscher Verlag für Grundstoffindustrie, Leipzig, 5th edition, 1990

Massart D. L.; Vandeginste B. G. M.; Buydens L. M. C.; De Jong S.; Lewi P. J.; Smeyers-Verbeke J.; *Handbook of Chemometrics and Qualimetrics Part A and B.* Elsevier, Amsterdam, 1997

26.10.2007

Chemical (Elemental) Analysis

Thank You For Your Attention

